Abstract:This work seeks to tackle the inherent complexity of dataspaces by introducing a novel data structure that can represent datasets across multiple levels of abstraction, ranging from local to global. We propose the concept of a multilevel graph, which is equipped with two fundamental operations: contraction and expansion of its topology. This multilevel graph is specifically designed to fulfil the requirements for incremental abstraction and flexibility, as outlined in existing definitions of dataspaces. Furthermore, we provide a comprehensive suite of methods for manipulating this graph structure, establishing a robust framework for data analysis. While its effectiveness has been empirically validated for unstructured data, its application to structured data is also inherently viable. Preliminary results are presented through a real-world scenario based on a collection of dream reports.
Abstract:Anomaly detection in continuous-time dynamic graphs is an emerging field yet under-explored in the context of learning-based approaches. In this paper, we pioneer structured analyses of link-level anomalies and graph representation learning for identifying anomalous links in these graphs. First, we introduce a fine-grain taxonomy for edge-level anomalies leveraging structural, temporal, and contextual graph properties. We present a method for generating and injecting such typed anomalies into graphs. Next, we introduce a novel method to generate continuous-time dynamic graphs with consistent patterns across time, structure, and context. To allow temporal graph methods to learn the link anomaly detection task, we extend the generic link prediction setting by: (1) conditioning link existence on contextual edge attributes; and (2) refining the training regime to accommodate diverse perturbations in the negative edge sampler. Building on this, we benchmark methods for anomaly detection. Comprehensive experiments on synthetic and real-world datasets -- featuring synthetic and labeled organic anomalies and employing six state-of-the-art learning methods -- validate our taxonomy and generation processes for anomalies and benign graphs, as well as our approach to adapting link prediction methods for anomaly detection. Our results further reveal that different learning methods excel in capturing different aspects of graph normality and detecting different types of anomalies. We conclude with a comprehensive list of findings highlighting opportunities for future research.
Abstract:Graph Neural Networks (GNNs) are well-suited for learning on homophilous graphs, i.e., graphs in which edges tend to connect nodes of the same type. Yet, achievement of consistent GNN performance on heterophilous graphs remains an open research problem. Recent works have proposed extensions to standard GNN architectures to improve performance on heterophilous graphs, trading off model simplicity for prediction accuracy. However, these models fail to capture basic graph properties, such as neighborhood label distribution, which are fundamental for learning. In this work, we propose GCN for Heterophily (GCNH), a simple yet effective GNN architecture applicable to both heterophilous and homophilous scenarios. GCNH learns and combines separate representations for a node and its neighbors, using one learned importance coefficient per layer to balance the contributions of center nodes and neighborhoods. We conduct extensive experiments on eight real-world graphs and a set of synthetic graphs with varying degrees of heterophily to demonstrate how the design choices for GCNH lead to a sizable improvement over a vanilla GCN. Moreover, GCNH outperforms state-of-the-art models of much higher complexity on four out of eight benchmarks, while producing comparable results on the remaining datasets. Finally, we discuss and analyze the lower complexity of GCNH, which results in fewer trainable parameters and faster training times than other methods, and show how GCNH mitigates the oversmoothing problem.
Abstract:Graph Neural Networks (GNNs) achieve state-of-the-art performance on graph-structured data across numerous domains. Their underlying ability to represent nodes as summaries of their vicinities has proven effective for homophilous graphs in particular, in which same-type nodes tend to connect. On heterophilous graphs, in which different-type nodes are likely connected, GNNs perform less consistently, as neighborhood information might be less representative or even misleading. On the other hand, GNN performance is not inferior on all heterophilous graphs, and there is a lack of understanding of what other graph properties affect GNN performance. In this work, we highlight the limitations of the widely used homophily ratio and the recent Cross-Class Neighborhood Similarity (CCNS) metric in estimating GNN performance. To overcome these limitations, we introduce 2-hop Neighbor Class Similarity (2NCS), a new quantitative graph structural property that correlates with GNN performance more strongly and consistently than alternative metrics. 2NCS considers two-hop neighborhoods as a theoretically derived consequence of the two-step label propagation process governing GCN's training-inference process. Experiments on one synthetic and eight real-world graph datasets confirm consistent improvements over existing metrics in estimating the accuracy of GCN- and GAT-based architectures on the node classification task.