Abstract:Distributed denial-of-service (DDoS) attacks remain a critical threat to Internet services, causing costly disruptions. While machine learning (ML) has shown promise in DDoS detection, current solutions struggle with multi-domain environments where attacks must be detected across heterogeneous networks and organizational boundaries. This limitation severely impacts the practical deployment of ML-based defenses in real-world settings. This paper introduces Anomaly-Flow, a novel framework that addresses this critical gap by combining Federated Learning (FL) with Generative Adversarial Networks (GANs) for privacy-preserving, multi-domain DDoS detection. Our proposal enables collaborative learning across diverse network domains while preserving data privacy through synthetic flow generation. Through extensive evaluation across three distinct network datasets, Anomaly-Flow achieves an average F1-score of $0.747$, outperforming baseline models. Importantly, our framework enables organizations to share attack detection capabilities without exposing sensitive network data, making it particularly valuable for critical infrastructure and privacy-sensitive sectors. Beyond immediate technical contributions, this work provides insights into the challenges and opportunities in multi-domain DDoS detection, establishing a foundation for future research in collaborative network defense systems. Our findings have important implications for academic research and industry practitioners working to deploy practical ML-based security solutions.
Abstract:Timely response of Network Intrusion Detection Systems (NIDS) is constrained by the flow generation process which requires accumulation of network packets. This paper introduces Multivariate Time Series (MTS) early detection into NIDS to identify malicious flows prior to their arrival at target systems. With this in mind, we first propose a novel feature extractor, Time Series Network Flow Meter (TS-NFM), that represents network flow as MTS with explainable features, and a new benchmark dataset is created using TS-NFM and the meta-data of CICIDS2017, called SCVIC-TS-2022. Additionally, a new deep learning-based early detection model called Multi-Domain Transformer (MDT) is proposed, which incorporates the frequency domain into Transformer. This work further proposes a Multi-Domain Multi-Head Attention (MD-MHA) mechanism to improve the ability of MDT to extract better features. Based on the experimental results, the proposed methodology improves the earliness of the conventional NIDS (i.e., percentage of packets that are used for classification) by 5x10^4 times and duration-based earliness (i.e., percentage of duration of the classified packets of a flow) by a factor of 60, resulting in a 84.1% macro F1 score (31% higher than Transformer) on SCVIC-TS-2022. Additionally, the proposed MDT outperforms the state-of-the-art early detection methods by 5% and 6% on ECG and Wafer datasets, respectively.