Abstract:Internet of Things (IoT) devices are increasingly pervasive and essential components in enabling new applications and services. However, their widespread use also exposes them to exploitable vulnerabilities and flaws that can lead to significant losses. In this context, ensuring robust cybersecurity measures is essential to protect IoT devices from malicious attacks. However, the current solutions that provide flexible policy specifications and higher security levels for IoT devices are scarce. To address this gap, we introduce T800, a low-resource packet filter that utilizes machine learning (ML) algorithms to classify packets in IoT devices. We present a detailed performance benchmarking framework and demonstrate T800's effectiveness on the ESP32 system-on-chip microcontroller and ESP-IDF framework. Our evaluation shows that T800 is an efficient solution that increases device computational capacity by excluding unsolicited malicious traffic from the processing pipeline. Additionally, T800 is adaptable to different systems and provides a well-documented performance evaluation strategy for security ML-based mechanisms on ESP32-based IoT systems. Our research contributes to improving the cybersecurity of resource-constrained IoT devices and provides a scalable, efficient solution that can be used to enhance the security of IoT systems.
Abstract:Most research using machine learning (ML) for network intrusion detection systems (NIDS) uses well-established datasets such as KDD-CUP99, NSL-KDD, UNSW-NB15, and CICIDS-2017. In this context, the possibilities of machine learning techniques are explored, aiming for metrics improvements compared to the published baselines (model-centric approach). However, those datasets present some limitations as aging that make it unfeasible to transpose those ML-based solutions to real-world applications. This paper presents a systematic data-centric approach to address the current limitations of NIDS research, specifically the datasets. This approach generates NIDS datasets composed of the most recent network traffic and attacks, with the labeling process integrated by design.
Abstract:This paper presents a Robot Operating System and Gazebo application to calculate and simulate an optimal route for a drone in an urban environment by developing new ROS packages and executing them along with open-source tools. Firstly, the current regulations about UAS are presented to guide the building of the simulated environment, and multiple path planning algorithms are reviewed to guide the search method selection. After selecting the A-star algorithm, both the 2D and 3D versions of them were implemented in this paper, with both Manhattan and Euclidean distances heuristics. The performance of these algorithms was evaluated considering the distance to be covered by the drone and the execution time of the route planning method, aiming to support algorithm's choice based on the environment in which it will be applied. The algorithm execution time was 3.2 and 17.2 higher when using the Euclidean distance for the 2D and 3D A-star algorithm, respectively. Along with the performance analysis of the algorithm, this paper is also the first step for building a complete UAS Traffic Management (UTM) system simulation using ROS and Gazebo.