Abstract:Forest fires pose a significant threat to ecosystems, economies, and human health worldwide. Early detection and assessment of forest fires are crucial for effective management and conservation efforts. Unmanned Aerial Vehicles (UAVs) equipped with advanced computer vision algorithms offer a promising solution for forest fire detection and assessment. In this paper, we optimize an integrated forest fire risk assessment framework using UAVs and multi-stage object detection algorithms. We introduce improvements to our previous framework, including the adoption of Faster R-CNN, Grid R-CNN, Sparse R-CNN, Cascade R-CNN, Dynamic R-CNN, and Libra R-CNN detectors, and explore optimizations such as CBAM for attention enhancement, random erasing for preprocessing, and different color space representations. We evaluate these enhancements through extensive experimentation using aerial image footage from various regions in British Columbia, Canada. Our findings demonstrate the effectiveness of multi-stage detectors and optimizations in improving the accuracy of forest fire risk assessment. This research contributes to the advancement of UAV-based forest fire detection and assessment systems, enhancing their efficiency and effectiveness in supporting sustainable forest management and conservation efforts.
Abstract:The exponential growth of artificial intelligence (AI) and machine learning (ML) applications has necessitated the development of efficient storage solutions for vector and tensor data. This paper presents a novel approach for tensor storage in a Lakehouse architecture using Delta Lake. By adopting the multidimensional array storage strategy from array databases and sparse encoding methods to Delta Lake tables, experiments show that this approach has demonstrated notable improvements in both space and time efficiencies when compared to traditional serialization of tensors. These results provide valuable insights for the development and implementation of optimized vector and tensor storage solutions in data-intensive applications, contributing to the evolution of efficient data management practices in AI and ML domains in cloud-native environments