Abstract:Individuals with cerebral palsy (CP) and amyotrophic lateral sclerosis (ALS) frequently face challenges with articulation, leading to dysarthria and resulting in atypical speech patterns. In healthcare settings, coomunication breakdowns reduce the quality of care. While building an augmentative and alternative communication (AAC) tool to enable fluid communication we found that state-of-the-art (SOTA) automatic speech recognition (ASR) technology like Whisper and Wav2vec2.0 marginalizes atypical speakers largely due to the lack of training data. Our work looks to leverage SOTA ASR followed by domain specific error-correction. English dysarthric ASR performance is often evaluated on the TORGO dataset. Prompt-overlap is a well-known issue with this dataset where phrases overlap between training and test speakers. Our work proposes an algorithm to break this prompt-overlap. After reducing prompt-overlap, results with SOTA ASR models produce extremely high word error rates for speakers with mild and severe dysarthria. Furthermore, to improve ASR, our work looks at the impact of n-gram language models and large-language model (LLM) based multi-modal generative error-correction algorithms like Whispering-LLaMA for a second pass ASR. Our work highlights how much more needs to be done to improve ASR for atypical speakers to enable equitable healthcare access both in-person and in e-health settings.
Abstract:Forest fires pose a significant threat to ecosystems, economies, and human health worldwide. Early detection and assessment of forest fires are crucial for effective management and conservation efforts. Unmanned Aerial Vehicles (UAVs) equipped with advanced computer vision algorithms offer a promising solution for forest fire detection and assessment. In this paper, we optimize an integrated forest fire risk assessment framework using UAVs and multi-stage object detection algorithms. We introduce improvements to our previous framework, including the adoption of Faster R-CNN, Grid R-CNN, Sparse R-CNN, Cascade R-CNN, Dynamic R-CNN, and Libra R-CNN detectors, and explore optimizations such as CBAM for attention enhancement, random erasing for preprocessing, and different color space representations. We evaluate these enhancements through extensive experimentation using aerial image footage from various regions in British Columbia, Canada. Our findings demonstrate the effectiveness of multi-stage detectors and optimizations in improving the accuracy of forest fire risk assessment. This research contributes to the advancement of UAV-based forest fire detection and assessment systems, enhancing their efficiency and effectiveness in supporting sustainable forest management and conservation efforts.