Abstract:Group fairness is a central research topic in text classification, where reaching fair treatment between sensitive groups (e.g., women and men) remains an open challenge. We propose an approach that extends the use of the Wasserstein Dependency Measure for learning unbiased neural text classifiers. Given the challenge of distinguishing fair from unfair information in a text encoder, we draw inspiration from adversarial training by inducing independence between representations learned for the target label and those for a sensitive attribute. We further show that Domain Adaptation can be efficiently leveraged to remove the need for access to the sensitive attributes in the dataset we cure. We provide both theoretical and empirical evidence that our approach is well-founded.
Abstract:It has been shown in the field of Author Profiling that texts may inadvertently reveal sensitive information about their authors, such as gender or age. This raises important privacy concerns that have been extensively addressed in the literature, in particular with the development of methods to hide such information. We argue that, when these texts are in fact messages exchanged between individuals, this is not the end of the story. Indeed, in this case, a second party, the intended recipient, is also involved and should be considered. In this work, we investigate the potential privacy leaks affecting them, that is we propose and address the problem of Recipient Profiling. We provide empirical evidence that such a task is feasible on several publicly accessible datasets (https://huggingface.co/datasets/sileod/recipient_profiling). Furthermore, we show that the learned models can be transferred to other datasets, albeit with a loss in accuracy.