Abstract:Generally, crowd datasets can be collected or generated from real or synthetic sources. Real data is generated by using infrastructure-based sensors (such as static cameras or other sensors). The use of simulation tools can significantly reduce the time required to generate scenario-specific crowd datasets, facilitate data-driven research, and next build functional machine learning models. The main goal of this work was to develop an extension of crowd simulation (named CrowdSim2) and prove its usability in the application of people-tracking algorithms. The simulator is developed using the very popular Unity 3D engine with particular emphasis on the aspects of realism in the environment, weather conditions, traffic, and the movement and models of individual agents. Finally, three methods of tracking were used to validate generated dataset: IOU-Tracker, Deep-Sort, and Deep-TAMA.
Abstract:Data scarcity has become one of the main obstacles to developing supervised models based on Artificial Intelligence in Computer Vision. Indeed, Deep Learning-based models systematically struggle when applied in new scenarios never seen during training and may not be adequately tested in non-ordinary yet crucial real-world situations. This paper presents and publicly releases CrowdSim2, a new synthetic collection of images suitable for people and vehicle detection gathered from a simulator based on the Unity graphical engine. It consists of thousands of images gathered from various synthetic scenarios resembling the real world, where we varied some factors of interest, such as the weather conditions and the number of objects in the scenes. The labels are automatically collected and consist of bounding boxes that precisely localize objects belonging to the two object classes, leaving out humans from the annotation pipeline. We exploited this new benchmark as a testing ground for some state-of-the-art detectors, showing that our simulated scenarios can be a valuable tool for measuring their performances in a controlled environment.
Abstract:The signal resulting from magnetic resonance spectroscopy is occupied by noises and irregularities so in the further analysis preprocessing techniques have to be introduced. The main idea of the paper is to develop a model of a signal as a sum of harmonics and to find its parameters. Such an approach is based on singular value decomposition applied to the data arranged in the Hankel matrix (HSVD) and can be used in each step of preprocessing techniques. For that purpose a method has was tested on real phantom data.