Abstract:Robot-led physical therapy (PT) offers a promising avenue to enhance the care provided by clinical exercise specialists (ES) and physical and occupational therapists to improve patients' adherence to prescribed exercises outside of a clinic, such as at home. Collaborative efforts among roboticists, ES, physical and occupational therapists, and patients are essential for developing interactive, personalized exercise systems that meet each stakeholder's needs. We conducted a user study in which 11 ES evaluated a novel robot-led PT system for people with Parkinson's disease (PD), introduced in [1], focusing on the system's perceived efficacy and acceptance. Utilizing a mixed-methods approach, including technology acceptance questionnaires, task load questionnaires, and semi-structured interviews, we gathered comprehensive insights into ES perspectives and experiences after interacting with the system. Findings reveal a broadly positive reception, which highlights the system's capacity to augment traditional PT for PD, enhance patient engagement, and ensure consistent exercise support. We also identified two key areas for improvement: incorporating more human-like feedback systems and increasing the robot's ease of use. This research emphasizes the value of incorporating robotic aids into PT for PD, offering insights that can guide the development of more effective and user-friendly rehabilitation technologies.
Abstract:Physical therapy (PT) is a key component of many rehabilitation regimens, such as treatments for Parkinson's disease (PD). However, there are shortages of physical therapists and adherence to self-guided PT is low. Robots have the potential to support physical therapists and increase adherence to self-guided PT, but prior robotic systems have been large and immobile, which can be a barrier to use in homes and clinics. We present Stretch with Stretch (SWS), a novel robotic system for leading stretching exercise games for older adults with PD. SWS consists of a compact and lightweight mobile manipulator (Hello Robot Stretch RE1) that visually and verbally guides users through PT exercises. The robot's soft end effector serves as a target that users repetitively reach towards and press with a hand, foot, or knee. For each exercise, target locations are customized for the individual via a visually estimated kinematic model, a haptically estimated range of motion, and the person's exercise performance. The system includes sound effects and verbal feedback from the robot to keep users engaged throughout a session and augment physical exercise with cognitive exercise. We conducted a user study for which people with PD (n=10) performed 6 exercises with the system. Participants perceived the SWS to be useful and easy to use. They also reported mild to moderate perceived exertion (RPE).