Abstract:Creating geometric digital twins (gDT) for as-built roads still faces many challenges, such as low automation level and accuracy, limited asset types and shapes, and reliance on engineering experience. A novel scan-to-building information modeling (scan-to-BIM) framework is proposed for automatic road gDT creation based on semantically labeled point cloud data (PCD), which considers six asset types: Road Surface, Road Side (Slope), Road Lane (Marking), Road Sign, Road Light, and Guardrail. The framework first segments the semantic PCD into spatially independent instances or parts, then extracts the sectional polygon contours as their representative geometric information, stored in JavaScript Object Notation (JSON) files using a new data structure. Primitive gDTs are finally created from JSON files using corresponding conversion algorithms. The proposed method achieves an average distance error of 1.46 centimeters and a processing speed of 6.29 meters per second on six real-world road segments with a total length of 1,200 meters.
Abstract:Graph is considered a promising way for managing building information. A new graphic form of IFC (Industry Foundation Classes) data has just been developed, referred to as IFC-Graph. However, understanding of IFC-Graph is insufficient, especially for information query. This study aims to explore graphic building information query and develop a graph query language tailored for IFC-Graph. A series of tasks were carried out, including a) investigating the structure of IFC data and the main types of information in IFC, b) investigating the graph query language Cypher, and c) developing a set of tailored functional query patterns. The developed language is referred to as Cypher4BIM. Five IFC models were used for validation, and the result shows that Cypher4BIM can query individual instances and complex relations from IFC, such as spatial structure, space boundary, and space accessibility. This study contributes to applications that require effective building information query, such as digital twin.
Abstract:Being able to efficiently retrieve the required building information is critical for construction project stakeholders to carry out their engineering and management activities. Natural language interface (NLI) systems are emerging as a time and cost-effective way to query Building Information Models (BIMs). However, the existing methods cannot logically combine different constraints to perform fine-grained queries, dampening the usability of natural language (NL)-based BIM queries. This paper presents a novel ontology-aided semantic parser to automatically map natural language queries (NLQs) that contain different attribute and relational constraints into computer-readable codes for querying complex BIM models. First, a modular ontology was developed to represent NL expressions of Industry Foundation Classes (IFC) concepts and relationships, and was then populated with entities from target BIM models to assimilate project-specific information. Hereafter, the ontology-aided semantic parser progressively extracts concepts, relationships, and value restrictions from NLQs to fully identify constraint conditions, resulting in standard SPARQL queries with reasoning rules to successfully retrieve IFC-based BIM models. The approach was evaluated based on 225 NLQs collected from BIM users, with a 91% accuracy rate. Finally, a case study about the design-checking of a real-world residential building demonstrates the practical value of the proposed approach in the construction industry.