Abstract:Full-graph and mini-batch Graph Neural Network (GNN) training approaches have distinct system design demands, making it crucial to choose the appropriate approach to develop. A core challenge in comparing these two GNN training approaches lies in characterizing their model performance (i.e., convergence and generalization) and computational efficiency. While a batch size has been an effective lens in analyzing such behaviors in deep neural networks (DNNs), GNNs extend this lens by introducing a fan-out size, as full-graph training can be viewed as mini-batch training with the largest possible batch size and fan-out size. However, the impact of the batch and fan-out size for GNNs remains insufficiently explored. To this end, this paper systematically compares full-graph vs. mini-batch training of GNNs through empirical and theoretical analyses from the view points of the batch size and fan-out size. Our key contributions include: 1) We provide a novel generalization analysis using the Wasserstein distance to study the impact of the graph structure, especially the fan-out size. 2) We uncover the non-isotropic effects of the batch size and the fan-out size in GNN convergence and generalization, providing practical guidance for tuning these hyperparameters under resource constraints. Finally, full-graph training does not always yield better model performance or computational efficiency than well-tuned smaller mini-batch settings. The implementation can be found in the github link: https://github.com/LIUMENGFAN-gif/GNN_fullgraph_minibatch_training.
Abstract:With the advancement of serverless computing, running machine learning (ML) inference services over a serverless platform has been advocated, given its labor-free scalability and cost effectiveness. Mixture-of-Experts (MoE) models have been a dominant type of model architectures to enable large models nowadays, with parallel expert networks. Serving large MoE models on serverless computing is potentially beneficial, but has been underexplored due to substantial challenges in handling the skewed expert popularity and scatter-gather communication bottleneck in MoE model execution, for cost-efficient serverless MoE deployment and performance guarantee. We study optimized MoE model deployment and distributed inference serving on a serverless platform, that effectively predict expert selection, pipeline communication with model execution, and minimize the overall billed cost of serving MoE models. Especially, we propose a Bayesian optimization framework with multi-dimensional epsilon-greedy search to learn expert selections and optimal MoE deployment achieving optimal billed cost, including: 1) a Bayesian decision-making method for predicting expert popularity; 2) flexibly pipelined scatter-gather communication; and 3) an optimal model deployment algorithm for distributed MoE serving. Extensive experiments on AWS Lambda show that our designs reduce the billed cost of all MoE layers by at least 75.67% compared to CPU clusters while maintaining satisfactory inference throughput. As compared to LambdaML in serverless computing, our designs achieves 43.41% lower cost with a throughput decrease of at most 18.76%.




Abstract:Predicting student performance is a fundamental task in Intelligent Tutoring Systems (ITSs), by which we can learn about students' knowledge level and provide personalized teaching strategies for them. Researchers have made plenty of efforts on this task. They either leverage educational psychology methods to predict students' scores according to the learned knowledge proficiency, or make full use of Collaborative Filtering (CF) models to represent latent factors of students and exercises. However, most of these methods either neglect the exercise-specific characteristics (e.g., exercise materials), or cannot fully explore the high-order interactions between students, exercises, as well as knowledge concepts. To this end, we propose a Graph-based Exercise- and Knowledge-Aware Learning Network for accurate student score prediction. Specifically, we learn students' mastery of exercises and knowledge concepts respectively to model the two-fold effects of exercises and knowledge concepts. Then, to model the high-order interactions, we apply graph convolution techniques in the prediction process. Extensive experiments on two real-world datasets prove the effectiveness of our proposed Graph-EKLN.