Abstract:In contrast to non-medical image denoising, where enhancing image clarity is the primary goal, medical image denoising warrants preservation of crucial features without introduction of new artifacts. However, many denoising methods that improve the clarity of the image, inadvertently alter critical information of the denoised images, potentially compromising classification performance and diagnostic quality. Additionally, supervised denoising methods are not very practical in medical image domain, since a \emph{ground truth} denoised version of a noisy medical image is often extremely challenging to obtain. In this paper, we tackle both of these problems by introducing a novel neural network based method -- \emph{Contextual Checkerboard Denoising}, that can learn denoising from only a dataset of noisy images, while preserving crucial anatomical details necessary for image classification/analysis. We perform our experimentation on real Optical Coherence Tomography (OCT) images, and empirically demonstrate that our proposed method significantly improves image quality, providing clearer and more detailed OCT images, while enhancing diagnostic accuracy.
Abstract:Ophthalmic diseases represent a significant global health issue, necessitating the use of advanced precise diagnostic tools. Optical Coherence Tomography (OCT) imagery which offers high-resolution cross-sectional images of the retina has become a pivotal imaging modality in ophthalmology. Traditionally physicians have manually detected various diseases and biomarkers from such diagnostic imagery. In recent times, deep learning techniques have been extensively used for medical diagnostic tasks enabling fast and precise diagnosis. This paper presents a novel approach for ophthalmic biomarker detection using an ensemble of Convolutional Neural Network (CNN) and Vision Transformer. While CNNs are good for feature extraction within the local context of the image, transformers are known for their ability to extract features from the global context of the image. Using an ensemble of both techniques allows us to harness the best of both worlds. Our method has been implemented on the OLIVES dataset to detect 6 major biomarkers from the OCT images and shows significant improvement of the macro averaged F1 score on the dataset.
Abstract:One of the most catastrophic neurological disorders worldwide is Parkinson's Disease. Along with it, the treatment is complicated and abundantly expensive. The only effective action to control the progression is diagnosing it in the early stage. However, this is challenging because early detection necessitates a large and complex clinical study. This experimental work used Machine Learning techniques to automate the early detection of Parkinson's Disease from clinical characteristics, voice features and motor examination. In this study, we develop ML models utilizing a public dataset of 130 individuals, 30 of whom are untreated Parkinson's Disease patients, 50 of whom are Rapid Eye Movement Sleep Behaviour Disorder patients who are at a greater risk of contracting Parkinson's Disease, and 50 of whom are Healthy Controls. We use MinMax Scaler to rescale the data points, Local Outlier Factor to remove outliers, and SMOTE to balance existing class frequency. Afterwards, apply a number of Machine Learning techniques. We implement the approaches in such a way that data leaking and overfitting are not possible. Finally, obtained 100% accuracy in classifying PD and RBD patients, as well as 92% accuracy in classifying PD and HC individuals.
Abstract:Brain tumors are increasingly prevalent, characterized by the uncontrolled spread of aberrant tissues in the brain, with almost 700,000 new cases diagnosed globally each year. Magnetic Resonance Imaging (MRI) is commonly used for the diagnosis of brain tumors and accurate classification is a critical clinical procedure. In this study, we propose an efficient solution for classifying brain tumors from MRI images using custom transfer learning networks. While several researchers have employed various pre-trained architectures such as RESNET-50, ALEXNET, VGG-16, and VGG-19, these methods often suffer from high computational complexity. To address this issue, we present a custom and lightweight model using a Convolutional Neural Network-based pre-trained architecture with reduced complexity. Specifically, we employ the VGG-19 architecture with additional hidden layers, which reduces the complexity of the base architecture but improves computational efficiency. The objective is to achieve high classification accuracy using a novel approach. Finally, the result demonstrates a classification accuracy of 96.42%.
Abstract:Chronic Kidney Disease (CKD) has infected almost 800 million people around the world. Around 1.7 million people die each year because of it. Detecting CKD in the initial stage is essential for saving millions of lives. Many researchers have applied distinct Machine Learning (ML) methods to detect CKD at an early stage, but detailed studies are still missing. We present a structured and thorough method for dealing with the complexities of medical data with optimal performance. Besides, this study will assist researchers in producing clear ideas on the medical data preparation pipeline. In this paper, we applied KNN Imputation to impute missing values, Local Outlier Factor to remove outliers, SMOTE to handle data imbalance, K-stratified K-fold Cross-validation to validate the ML models, and a novel hybrid feature selection method to remove redundant features. Applied algorithms in this study are Support Vector Machine, Gaussian Naive Bayes, Decision Tree, Random Forest, Logistic Regression, K-Nearest Neighbor, Gradient Boosting, Adaptive Boosting, and Extreme Gradient Boosting. Finally, the Random Forest can detect CKD with 100% accuracy without any data leakage.
Abstract:Today's business ecosystem has become very competitive. Customer satisfaction has become a major focus for business growth. Business organizations are spending a lot of money and human resources on various strategies to understand and fulfill their customer's needs. But, because of defective manual analysis on multifarious needs of customers, many organizations are failing to achieve customer satisfaction. As a result, they are losing customer's loyalty and spending extra money on marketing. We can solve the problems by implementing Sentiment Analysis. It is a combined technique of Natural Language Processing (NLP) and Machine Learning (ML). Sentiment Analysis is broadly used to extract insights from wider public opinion behind certain topics, products, and services. We can do it from any online available data. In this paper, we have introduced two NLP techniques (Bag-of-Words and TF-IDF) and various ML classification algorithms (Support Vector Machine, Logistic Regression, Multinomial Naive Bayes, Random Forest) to find an effective approach for Sentiment Analysis on a large, imbalanced, and multi-classed dataset. Our best approaches provide 77% accuracy using Support Vector Machine and Logistic Regression with Bag-of-Words technique.
Abstract:Worldwide research shows that millions of lives lost per year because of heart disease. The healthcare sector produces massive volumes of data on heart disease that are sadly not used to locate secret knowledge for successful decision making. One of the most important aspects at this moment is detecting heart disease at an early stage. Researchers have applied distinct techniques to the UCI Machine Learning heart disease dataset. Many researchers have tried to apply some complex techniques to this dataset, where detailed studies are still missing. In this paper, Principal Component Analysis (PCA) has been used to reduce attributes. Apart from a Hybrid genetic algorithm (HGA) with k-means used for final clustering. Typically, the k-means method is using for clustering the data. This type of clustering can get stuck in the local optima because this method is heuristic. We used the Hybrid Genetic Algorithm (HGA) for data clustering to avoid this problem. Our proposed method can predict early heart disease with an accuracy of 94.06%.