Abstract:With the utilization of Transformer architecture, large Vision and Language (V&L) models have shown promising performance in even zero-shot settings. Several studies, however, indicate a lack of robustness of the models when dealing with complex linguistics and visual attributes. In this work, we introduce a novel V&L benchmark - ColorFoil, by creating color-related foils to assess the models' perception ability to detect colors like red, white, green, etc. We evaluate seven state-of-the-art V&L models including CLIP, ViLT, GroupViT, and BridgeTower, etc. in a zero-shot setting and present intriguing findings from the V&L models. The experimental evaluation indicates that ViLT and BridgeTower demonstrate much better color perception capabilities compared to CLIP and its variants and GroupViT. Moreover, CLIP-based models and GroupViT struggle to distinguish colors that are visually distinct to humans with normal color perception ability.
Abstract:The performance of data-driven natural language processing systems is contingent upon the quality of corpora. However, principal corpus design criteria are often not identified and examined adequately, particularly in the speech processing discipline. Speech corpora development requires additional attention with regard to clean/noisy, read/spontaneous, multi-talker speech, accents/dialects, etc. Domain selection is also a crucial decision point in speech corpus development. In this study, we demonstrate the significance of domain selection by assessing a state-of-the-art Bangla automatic speech recognition (ASR) model on a novel multi-domain Bangladeshi Bangla ASR evaluation benchmark - BanSpeech, which contains 7.2 hours of speech and 9802 utterances from 19 distinct domains. The ASR model has been trained with deep convolutional neural network (CNN), layer normalization technique, and Connectionist Temporal Classification (CTC) loss criterion on SUBAK.KO, a mostly read speech corpus for the low-resource and morphologically rich language Bangla. Experimental evaluation reveals the ASR model on SUBAK.KO faces difficulty recognizing speech from domains with mostly spontaneous speech and has a high number of out-of-vocabulary (OOV) words. The same ASR model, on the other hand, performs better in read speech domains and contains fewer OOV words. In addition, we report the outcomes of our experiments with layer normalization, input feature extraction, number of convolutional layers, etc., and set a baseline on SUBAK.KO. The BanSpeech will be publicly available to meet the need for a challenging evaluation benchmark for Bangla ASR.