Abstract:The rapid development of digital stages has greatly compounded the dispersal of untrue data, dissolving certainty and judgment in society, especially among the Bengali-speaking community. Our ponder addresses this critical issue by presenting an interesting strategy that utilizes a profound learning innovation, particularly the Gated Repetitive Unit (GRU), to recognize fake news within the Bangla dialect. The strategy of our proposed work incorporates intensive information preprocessing, which includes lemmatization, tokenization, and tending to course awkward nature by oversampling. This comes about in a dataset containing 58,478 passages. We appreciate the creation of a demonstration based on GRU (Gated Repetitive Unit) that illustrates remarkable execution with a noteworthy precision rate of 94%. This ponder gives an intensive clarification of the methods included in planning the information, selecting the show, preparing it, and assessing its execution. The performance of the model is investigated by reliable metrics like precision, recall, F1 score, and accuracy. The commitment of the work incorporates making a huge fake news dataset in Bangla and a demonstration that has outperformed other Bangla fake news location models.
Abstract:Faces and their expressions are one of the potent subjects for digital images. Detecting emotions from images is an ancient task in the field of computer vision; however, performing its reverse -- synthesizing facial expressions from images -- is quite new. Such operations of regenerating images with different facial expressions, or altering an existing expression in an image require the Generative Adversarial Network (GAN). In this paper, we aim to change the facial expression in an image using GAN, where the input image with an initial expression (i.e., happy) is altered to a different expression (i.e., disgusted) for the same person. We used StarGAN techniques on a modified version of the MUG dataset to accomplish this objective. Moreover, we extended our work further by remodeling facial expressions in an image indicated by the emotion from a given text. As a result, we applied a Long Short-Term Memory (LSTM) method to extract emotion from the text and forwarded it to our expression-altering module. As a demonstration of our working pipeline, we also create an application prototype of a blog that regenerates the profile picture with different expressions based on the user's textual emotion.