Abstract:The central aim of this paper is to implement Deep Autoencoder and Neighborhood Components Analysis (NCA) dimensionality reduction methods in Matlab and to observe the application of these algorithms on nine unlike datasets from UCI machine learning repository. These datasets are CNAE9, Movement Libras, Pima Indians diabetes, Parkinsons, Knowledge, Segmentation, Seeds, Mammographic Masses, and Ionosphere. First of all, the dimension of these datasets has been reduced to fifty percent of their original dimension by selecting and extracting the most relevant and appropriate features or attributes using Deep Autoencoder and NCA dimensionality reduction techniques. Afterward, each dataset is classified applying K-Nearest Neighbors (KNN), Extended Nearest Neighbors (ENN) and Support Vector Machine (SVM) classification algorithms. All classification algorithms are developed in the Matlab environment. In each classification, the training test data ratio is always set to ninety percent: ten percent. Upon classification, variation between accuracies is observed and analyzed to find the degree of compatibility of each dimensionality reduction technique with each classifier and to evaluate each classifier performance on each dataset.
Abstract:Addressing the problem of spam emails in the Internet, this paper presents a comparative study on Na\"ive Bayes and Artificial Neural Networks (ANN) based modeling of spammer behavior. Keyword-based spam email filtering techniques fall short to model spammer behavior as the spammer constantly changes tactics to circumvent these filters. The evasive tactics that the spammer uses are themselves patterns that can be modeled to combat spam. It has been observed that both Na\"ive Bayes and ANN are best suitable for modeling spammer common patterns. Experimental results demonstrate that both of them achieve a promising detection rate of around 92%, which is considerably an improvement of performance compared to the keyword-based contemporary filtering approaches.