Abstract:Short text stream clustering is an important but challenging task since massive amount of text is generated from different sources such as micro-blogging, question-answering, and social news aggregation websites. One of the major challenges of clustering such massive amount of text is to cluster them within a reasonable amount of time. The existing state-of-the-art short text stream clustering methods can not cluster such massive amount of text within a reasonable amount of time as they compute similarities between a text and all the existing clusters to assign that text to a cluster. To overcome this challenge, we propose a fast short text stream clustering method (called FastStream) that efficiently index the clusters using inverted index and compute similarity between a text and a selected number of clusters while assigning a text to a cluster. In this way, we not only reduce the running time of our proposed method but also reduce the running time of several state-of-the-art short text stream clustering methods. FastStream assigns a text to a cluster (new or existing) using the dynamically computed similarity thresholds based on statistical measure. Thus our method efficiently deals with the concept drift problem. Experimental results demonstrate that FastStream outperforms the state-of-the-art short text stream clustering methods by a significant margin on several short text datasets. In addition, the running time of FastStream is several orders of magnitude faster than that of the state-of-the-art methods.
Abstract:Short text clustering is a challenging task due to the lack of signal contained in such short texts. In this work, we propose iterative classification as a method to b o ost the clustering quality (e.g., accuracy) of short texts. Given a clustering of short texts obtained using an arbitrary clustering algorithm, iterative classification applies outlier removal to obtain outlier-free clusters. Then it trains a classification algorithm using the non-outliers based on their cluster distributions. Using the trained classification model, iterative classification reclassifies the outliers to obtain a new set of clusters. By repeating this several times, we obtain a much improved clustering of texts. Our experimental results show that the proposed clustering enhancement method not only improves the clustering quality of different clustering methods (e.g., k-means, k-means--, and hierarchical clustering) but also outperforms the state-of-the-art short text clustering methods on several short text datasets by a statistically significant margin.