Abstract:This study explores the potential of the Ping 360 sonar device, primarily used for navigation, in detecting complex underwater obstacles. The key motivation behind this research is the device's affordability and open-source nature, offering a cost-effective alternative to more expensive imaging sonar systems. The investigation focuses on understanding the behaviour of the Ping 360 in controlled environments and assessing its suitability for object detection, particularly in scenarios where human operators are unavailable for inspecting offshore structures in shallow waters. Through a series of carefully designed experiments, we examined the effects of surface reflections and object shadows in shallow underwater environments. Additionally, we developed a manually annotated sonar image dataset to train a U-Net segmentation model. Our findings indicate that while the Ping 360 sonar demonstrates potential in simpler settings, its performance is limited in more cluttered or reflective environments unless extensive data pre-processing and annotation are applied. To our knowledge, this is the first study to evaluate the Ping 360's capabilities for complex object detection. By investigating the feasibility of low-cost sonar devices, this research provides valuable insights into their limitations and potential for future AI-based interpretation, marking a unique contribution to the field.
Abstract:Accurate real-time prediction of formation pressure and kick detection is crucial for drilling operations, as it can significantly improve decision-making and the cost-effectiveness of the process. Data-driven models have gained popularity for automating drilling operations by predicting formation pressure and detecting kicks. However, the current literature does not make supporting datasets publicly available to advance research in the field of drilling rigs, thus impeding technological progress in this domain. This paper introduces two new datasets to support researchers in developing intelligent algorithms to enhance oil/gas well drilling research. The datasets include data samples for formation pressure prediction and kick detection with 28 drilling variables and more than 2000 data samples. Principal component regression is employed to forecast formation pressure, while principal component analysis is utilized to identify kicks for the dataset's technical validation. Notably, the R2 and Residual Predictive Deviation scores for principal component regression are 0.78 and 0.922, respectively.
Abstract:Retrofitting and thermographic survey (TS) companies in Scotland collaborate with social housing providers to tackle fuel poverty. They employ ground-level infrared (IR) camera-based-TSs (GIRTSs) for collecting thermal images to identi-fy the heat loss sources resulting from poor insulation. However, this identifica-tion process is labor-intensive and time-consuming, necessitating extensive data processing. To automate this, an AI-driven approach is necessary. Therefore, this study proposes a deep learning (DL)-based segmentation framework using the Mask Region Proposal Convolutional Neural Network (Mask RCNN) to validate its applicability to these thermal images. The objective of the framework is to au-tomatically identify, and crop heat loss sources caused by weak insulation, while also eliminating obstructive objects present in those images. By doing so, it min-imizes labor-intensive tasks and provides an automated, consistent, and reliable solution. To validate the proposed framework, approximately 2500 thermal imag-es were collected in collaboration with industrial TS partner. Then, 1800 repre-sentative images were carefully selected with the assistance of experts and anno-tated to highlight the target objects (TO) to form the final dataset. Subsequently, a transfer learning strategy was employed to train the dataset, progressively aug-menting the training data volume and fine-tuning the pre-trained baseline Mask RCNN. As a result, the final fine-tuned model achieved a mean average precision (mAP) score of 77.2% for segmenting the TO, demonstrating the significant po-tential of proposed framework in accurately quantifying energy loss in Scottish homes.