Abstract:Knowledge graphs are useful tools to organize, recommend and sort data. Hierarchies in knowledge graphs provide significant benefit in improving understanding and compartmentalization of the data within a knowledge graph. This work leverages large language models to generate and augment hierarchies in an existing knowledge graph. For small (<100,000 node) domain-specific KGs, we find that a combination of few-shot prompting with one-shot generation works well, while larger KG may require cyclical generation. We present techniques for augmenting hierarchies, which led to coverage increase by 98% for intents and 99% for colors in our knowledge graph.
Abstract:Depth Estimation has wide reaching applications in the field of Computer vision such as target tracking, augmented reality, and self-driving cars. The goal of Monocular Depth Estimation is to predict the depth map, given a 2D monocular RGB image as input. The traditional depth estimation methods are based on depth cues and used concepts like epipolar geometry. With the evolution of Convolutional Neural Networks, depth estimation has undergone tremendous strides. In this project, our aim is to explore possible extensions to existing SoTA Deep Learning based Depth Estimation Models and to see whether performance metrics could be further improved. In a broader sense, we are looking at the possibility of implementing Pose Estimation, Efficient Sub-Pixel Convolution Interpolation, Semantic Segmentation Estimation techniques to further enhance our proposed architecture and to provide fine-grained and more globally coherent depth map predictions. We also plan to do away with camera intrinsic parameters during training and apply weather augmentations to further generalize our model.