Abstract:Language-guided attention frameworks have significantly enhanced both interpretability and performance in image classification; however, the reliance on deterministic embeddings from pre-trained vision-language foundation models to generate reference attention maps frequently overlooks the intrinsic multivaluedness and ill-posed characteristics of cross-modal mappings. To address these limitations, we introduce PARIC, a probabilistic framework for guiding visual attention via language specifications. Our approach enables pre-trained vision-language models to generate probabilistic reference attention maps, which align textual and visual modalities more effectively while incorporating uncertainty estimates, as compared to their deterministic counterparts. Experiments on benchmark test problems demonstrate that PARIC enhances prediction accuracy, mitigates bias, ensures consistent predictions, and improves robustness across various datasets.
Abstract:We present a generative modeling approach based on the variational inference framework for likelihood-free simulation-based inference. The method leverages latent variables within variational autoencoders to efficiently estimate complex posterior distributions arising from stochastic simulations. We explore two variations of this approach distinguished by their treatment of the prior distribution. The first model adapts the prior based on observed data using a multivariate prior network, enhancing generalization across various posterior queries. In contrast, the second model utilizes a standard Gaussian prior, offering simplicity while still effectively capturing complex posterior distributions. We demonstrate the efficacy of these models on well-established benchmark problems, achieving results comparable to flow-based approaches while maintaining computational efficiency and scalability.