Abstract:Purpose: Simulation-based digital twins represent an effort to provide high-accuracy real-time insights into operational physical processes. However, the computation time of many multi-physical simulation models is far from real-time. It might even exceed sensible time frames to produce sufficient data for training data-driven reduced-order models. This study presents TwinLab, a framework for data-efficient, yet accurate training of neural-ODE type reduced-order models with only two data sets. Design/methodology/approach: Correlations between test errors of reduced-order models and distinct features of corresponding training data are investigated. Having found the single best data sets for training, a second data set is sought with the help of similarity and error measures to enrich the training process effectively. Findings: Adding a suitable second training data set in the training process reduces the test error by up to 49% compared to the best base reduced-order model trained only with one data set. Such a second training data set should at least yield a good reduced-order model on its own and exhibit higher levels of dissimilarity to the base training data set regarding the respective excitation signal. Moreover, the base reduced-order model should have elevated test errors on the second data set. The relative error of the time series ranges from 0.18% to 0.49%. Prediction speed-ups of up to a factor of 36,000 are observed. Originality: The proposed computational framework facilitates the automated, data-efficient extraction of non-intrusive reduced-order models for digital twins from existing simulation models, independent of the simulation software.
Abstract:This work introduces the concept of an autonomous cooking process based on Digital Twin method- ology. It proposes a hybrid approach of physics-based full order simulations followed by a data-driven system identification process with low errors. It makes faster-than-real-time simulations of Digital Twins feasible on a device level, without the need for cloud or high-performance computing. The concept is universally applicable to various physical processes.
Abstract:One possible way of making thermal processing controllable is to gather real-time information on the product's current state. Often, sensory equipment cannot capture all relevant information easily or at all. Digital Twins close this gap with virtual probes in real-time simulations, synchronized with the process. This paper proposes a physics-based, data-driven Digital Twin framework for autonomous food processing. We suggest a lean Digital Twin concept that is executable at the device level, entailing minimal computational load, data storage, and sensor data requirements. This study focuses on a parsimonious experimental design for training non-intrusive reduced-order models (ROMs) of a thermal process. A correlation ($R=-0.76$) between a high standard deviation of the surface temperatures in the training data and a low root mean square error in ROM testing enables efficient selection of training data. The mean test root mean square error of the best ROM is less than 1 Kelvin (0.2 % mean average percentage error) on representative test sets. Simulation speed-ups of Sp $\approx$ 1.8E4 allow on-device model predictive control. The proposed Digital Twin framework is designed to be applicable within the industry. Typically, non-intrusive reduced-order modeling is required as soon as the modeling of the process is performed in software, where root-level access to the solver is not provided, such as commercial simulation software. The data-driven training of the reduced-order model is achieved with only one data set, as correlations are utilized to predict the training success a priori.