Abstract:Large Language Models (LLMs) have been revolutionizing a myriad of natural language processing tasks with their diverse zero-shot capabilities. Indeed, existing work has shown that LLMs can be used to great effect for many tasks, such as information retrieval (IR), and passage ranking. However, current state-of-the-art results heavily lean on the capabilities of the LLM being used. Currently, proprietary, and very large LLMs such as GPT-4 are the highest performing passage re-rankers. Hence, users without the resources to leverage top of the line LLMs, or ones that are closed source, are at a disadvantage. In this paper, we investigate the use of a pre-filtering step before passage re-ranking in IR. Our experiments show that by using a small number of human generated relevance scores, coupled with LLM relevance scoring, it is effectively possible to filter out irrelevant passages before re-ranking. Our experiments also show that this pre-filtering then allows the LLM to perform significantly better at the re-ranking task. Indeed, our results show that smaller models such as Mixtral can become competitive with much larger proprietary models (e.g., ChatGPT and GPT-4).
Abstract:Defect reduction planning plays a vital role in enhancing software quality and minimizing software maintenance costs. By training a black box machine learning model and "explaining" its predictions, explainable AI for software engineering aims to identify the code characteristics that impact maintenance risks. However, post-hoc explanations do not always faithfully reflect what the original model computes. In this paper, we introduce CounterACT, a Counterfactual ACTion rule mining approach that can generate defect reduction plans without black-box models. By leveraging action rules, CounterACT provides a course of action that can be considered as a counterfactual explanation for the class (e.g., buggy or not buggy) assigned to a piece of code. We compare the effectiveness of CounterACT with the original action rule mining algorithm and six established defect reduction approaches on 9 software projects. Our evaluation is based on (a) overlap scores between proposed code changes and actual developer modifications; (b) improvement scores in future releases; and (c) the precision, recall, and F1-score of the plans. Our results show that, compared to competing approaches, CounterACT's explainable plans achieve higher overlap scores at the release level (median 95%) and commit level (median 85.97%), and they offer better trade-off between precision and recall (median F1-score 88.12%). Finally, we venture beyond planning and explore leveraging Large Language models (LLM) for generating code edits from our generated plans. Our results show that suggested LLM code edits supported by our plans are actionable and are more likely to pass relevant test cases than vanilla LLM code recommendations.
Abstract:Machine learning (ML), including deep learning, has recently gained tremendous popularity in a wide range of applications. However, like traditional software, ML applications are not immune to the bugs that result from programming errors. Explicit programming errors usually manifest through error messages and stack traces. These stack traces describe the chain of function calls that lead to an anomalous situation, or exception. Indeed, these exceptions may cross the entire software stack (including applications and libraries). Thus, studying the patterns in stack traces can help practitioners and researchers understand the causes of exceptions in ML applications and the challenges faced by ML developers. To that end, we mine Stack Overflow (SO) and study 11,449 stack traces related to seven popular Python ML libraries. First, we observe that ML questions that contain stack traces gain more popularity than questions without stack traces; however, they are less likely to get accepted answers. Second, we observe that recurrent patterns exists in ML stack traces, even across different ML libraries, with a small portion of patterns covering many stack traces. Third, we derive five high-level categories and 25 low-level types from the stack trace patterns: most patterns are related to python basic syntax, model training, parallelization, data transformation, and subprocess invocation. Furthermore, the patterns related to subprocess invocation, external module execution, and remote API call are among the least likely to get accepted answers on SO. Our findings provide insights for researchers, ML library providers, and ML application developers to improve the quality of ML libraries and their applications.