Abstract:The Set Covering Machine (SCM) is a greedy learning algorithm that produces sparse classifiers. We extend the SCM for datasets that contain a huge number of features. The whole genetic material of living organisms is an example of such a case, where the number of feature exceeds 10^7. Three human pathogens were used to evaluate the performance of the SCM at predicting antimicrobial resistance. Our results show that the SCM compares favorably in terms of sparsity and accuracy against L1 and L2 regularized Support Vector Machines and CART decision trees. Moreover, the SCM was the only algorithm that could consider the full feature space. For all other algorithms, the latter had to be filtered as a preprocessing step.
Abstract:The increased affordability of whole genome sequencing has motivated its use for phenotypic studies. We address the problem of learning interpretable models for discrete phenotypes from whole genomes. We propose a general approach that relies on the Set Covering Machine and a k-mer representation of the genomes. We show results for the problem of predicting the resistance of Pseudomonas Aeruginosa, an important human pathogen, against 4 antibiotics. Our results demonstrate that extremely sparse models which are biologically relevant can be learnt using this approach.