Abstract:Manipulating the material appearance of objects in images is critical for applications like augmented reality, virtual prototyping, and digital content creation. We present MaterialFusion, a novel framework for high-quality material transfer that allows users to adjust the degree of material application, achieving an optimal balance between new material properties and the object's original features. MaterialFusion seamlessly integrates the modified object into the scene by maintaining background consistency and mitigating boundary artifacts. To thoroughly evaluate our approach, we have compiled a dataset of real-world material transfer examples and conducted complex comparative analyses. Through comprehensive quantitative evaluations and user studies, we demonstrate that MaterialFusion significantly outperforms existing methods in terms of quality, user control, and background preservation. Code is available at https://github.com/kzGarifullin/MaterialFusion.
Abstract:Our paper addresses the complex task of transferring a hairstyle from a reference image to an input photo for virtual hair try-on. This task is challenging due to the need to adapt to various photo poses, the sensitivity of hairstyles, and the lack of objective metrics. The current state of the art hairstyle transfer methods use an optimization process for different parts of the approach, making them inexcusably slow. At the same time, faster encoder-based models are of very low quality because they either operate in StyleGAN's W+ space or use other low-dimensional image generators. Additionally, both approaches have a problem with hairstyle transfer when the source pose is very different from the target pose, because they either don't consider the pose at all or deal with it inefficiently. In our paper, we present the HairFast model, which uniquely solves these problems and achieves high resolution, near real-time performance, and superior reconstruction compared to optimization problem-based methods. Our solution includes a new architecture operating in the FS latent space of StyleGAN, an enhanced inpainting approach, and improved encoders for better alignment, color transfer, and a new encoder for post-processing. The effectiveness of our approach is demonstrated on realism metrics after random hairstyle transfer and reconstruction when the original hairstyle is transferred. In the most difficult scenario of transferring both shape and color of a hairstyle from different images, our method performs in less than a second on the Nvidia V100. Our code is available at https://github.com/AIRI-Institute/HairFastGAN.