Abstract:Cross-lingual conversational speech summarization is an important problem, but suffers from a dearth of resources. While transcriptions exist for a number of languages, translated conversational speech is rare and datasets containing summaries are non-existent. We build upon the existing Fisher and Callhome Spanish-English Speech Translation corpus by supplementing the translations with summaries. The summaries are generated using GPT-4 from the reference translations and are treated as ground truth. The task is to generate similar summaries in the presence of transcription and translation errors. We build a baseline cascade-based system using open-source speech recognition and machine translation models. We test a range of LLMs for summarization and analyze the impact of transcription and translation errors. Adapting the Mistral-7B model for this task performs significantly better than off-the-shelf models and matches the performance of GPT-4.