Abstract:Compared to traditional imitation learning methods such as DAgger and DART, intervention-based imitation offers a more convenient and sample efficient data collection process to users. In this paper, we introduce Reinforced Intervention-based Learning (ReIL), a framework consisting of a general intervention-based learning algorithm and a multi-task imitation learning model aimed at enabling non-expert users to train agents in real environments with little supervision or fine tuning. ReIL achieves this with an algorithm that combines the advantages of imitation learning and reinforcement learning and a model capable of concurrently processing demonstrations, past experience, and current observations. Experimental results from real world mobile robot navigation challenges indicate that ReIL learns rapidly from sparse supervisor corrections without suffering deterioration in performance that is characteristic of supervised learning-based methods such as HG-Dagger and IWR. The results also demonstrate that in contrast to other intervention-based methods such as IARL and EGPO, ReIL can utilize an arbitrary reward function for training without any additional heuristics.
Abstract:Current advances in deep learning is leading to human-level accuracy in computer vision tasks such as object classification, localization, semantic segmentation, and instance segmentation. In this paper, we describe a new deep convolutional neural network architecture called Vec2Instance for instance segmentation. Vec2Instance provides a framework for parametrization of instances, allowing convolutional neural networks to efficiently estimate the complex shapes of instances around their centroids. We demonstrate the feasibility of the proposed architecture with respect to instance segmentation tasks on satellite images, which have a wide range of applications. Moreover, we demonstrate the usefulness of the new method for extracting building foot-prints from satellite images. Total pixel-wise accuracy of our approach is 89\%, near the accuracy of the state-of-the-art Mask RCNN (91\%). Vec2Instance is an alternative approach to complex instance segmentation pipelines, offering simplicity and intuitiveness. The code developed under this study is available in the Vec2Instance GitHub repository, https://github.com/lakmalnd/Vec2Instance