Abstract:Global wildfire models play a crucial role in anticipating and responding to changing wildfire regimes. JULES-INFERNO is a global vegetation and fire model simulating wildfire emissions and area burnt on a global scale. However, because of the high data dimensionality and system complexity, JULES-INFERNO's computational costs make it challenging to apply to fire risk forecasting with unseen initial conditions. Typically, running JULES-INFERNO for 30 years of prediction will take several hours on High Performance Computing (HPC) clusters. To tackle this bottleneck, two data-driven models are built in this work based on Deep Learning techniques to surrogate the JULES-INFERNO model and speed up global wildfire forecasting. More precisely, these machine learning models take global temperature, vegetation density, soil moisture and previous forecasts as inputs to predict the subsequent global area burnt on an iterative basis. Average Error per Pixel (AEP) and Structural Similarity Index Measure (SSIM) are used as metrics to evaluate the performance of the proposed surrogate models. A fine tuning strategy is also proposed in this work to improve the algorithm performance for unseen scenarios. Numerical results show a strong performance of the proposed models, in terms of both computational efficiency (less than 20 seconds for 30 years of prediction on a laptop CPU) and prediction accuracy (with AEP under 0.3\% and SSIM over 98\% compared to the outputs of JULES-INFERNO).
Abstract:Wildfire prediction has become increasingly crucial due to the escalating impacts of climate change. Traditional CNN-based wildfire prediction models struggle with handling missing oceanic data and addressing the long-range dependencies across distant regions in meteorological data. In this paper, we introduce an innovative Graph Neural Network (GNN)-based model for global wildfire prediction. We propose a hybrid model that combines the spatial prowess of Graph Convolutional Networks (GCNs) with the temporal depth of Long Short-Term Memory (LSTM) networks. Our approach uniquely transforms global climate and wildfire data into a graph representation, addressing challenges such as null oceanic data locations and long-range dependencies inherent in traditional models. Benchmarking against established architectures using an unseen ensemble of JULES-INFERNO simulations, our model demonstrates superior predictive accuracy. Furthermore, we emphasise the model's explainability, unveiling potential wildfire correlation clusters through community detection and elucidating feature importance via Integrated Gradient analysis. Our findings not only advance the methodological domain of wildfire prediction but also underscore the importance of model transparency, offering valuable insights for stakeholders in wildfire management.