Abstract:Statistical agencies rely on sampling techniques to collect socio-demographic data crucial for policy-making and resource allocation. This paper shows that surveys of important societal relevance introduce sampling errors that unevenly impact group-level estimates, thereby compromising fairness in downstream decisions. To address these issues, this paper introduces an optimization approach modeled on real-world survey design processes, ensuring sampling costs are optimized while maintaining error margins within prescribed tolerances. Additionally, privacy-preserving methods used to determine sampling rates can further impact these fairness issues. The paper explores the impact of differential privacy on the statistics informing the sampling process, revealing a surprising effect: not only the expected negative effect from the addition of noise for differential privacy is negligible, but also this privacy noise can in fact reduce unfairness as it positively biases smaller counts. These findings are validated over an extensive analysis using datasets commonly applied in census statistics.
Abstract:The value-loading problem is a significant challenge for researchers aiming to create artificial intelligence (AI) systems that align with human values and preferences. This problem requires a method to define and regulate safe and optimal limits of AI behaviors. In this work, we propose HALO (Hormetic ALignment via Opponent processes), a regulatory paradigm that uses hormetic analysis to regulate the behavioral patterns of AI. Behavioral hormesis is a phenomenon where low frequencies of a behavior have beneficial effects, while high frequencies are harmful. By modeling behaviors as allostatic opponent processes, we can use either Behavioral Frequency Response Analysis (BFRA) or Behavioral Count Response Analysis (BCRA) to quantify the hormetic limits of repeatable behaviors. We demonstrate how HALO can solve the 'paperclip maximizer' scenario, a thought experiment where an unregulated AI tasked with making paperclips could end up converting all matter in the universe into paperclips. Our approach may be used to help create an evolving database of 'values' based on the hedonic calculus of repeatable behaviors with decreasing marginal utility. This positions HALO as a promising solution for the value-loading problem, which involves embedding human-aligned values into an AI system, and the weak-to-strong generalization problem, which explores whether weak models can supervise stronger models as they become more intelligent. Hence, HALO opens several research avenues that may lead to the development of a computational value system that allows an AI algorithm to learn whether the decisions it makes are right or wrong.