Abstract:This work introduces a novel nonparametric density index defined on graphs, the Sum-over-Forests (SoF) density index. It is based on a clear and intuitive idea: high-density regions in a graph are characterized by the fact that they contain a large amount of low-cost trees with high outdegrees while low-density regions contain few ones. Therefore, a Boltzmann probability distribution on the countable set of forests in the graph is defined so that large (high-cost) forests occur with a low probability while short (low-cost) forests occur with a high probability. Then, the SoF density index of a node is defined as the expected outdegree of this node in a non-trivial tree of the forest, thus providing a measure of density around that node. Following the matrix-forest theorem, and a statistical physics framework, it is shown that the SoF density index can be easily computed in closed form through a simple matrix inversion. Experiments on artificial and real data sets show that the proposed index performs well on finding dense regions, for graphs of various origins.