Abstract:The Non-equilibrium Green's function (NEGF) formalism is a particularly powerful method to simulate the quantum transport properties of nanoscale devices such as transistors, photo-diodes, or memory cells, in the ballistic limit of transport or in the presence of various scattering sources such as electronphonon, electron-photon, or even electron-electron interactions. The inclusion of all these mechanisms has been first demonstrated in small systems, composed of a few atoms, before being scaled up to larger structures made of thousands of atoms. Also, the accuracy of the models has kept improving, from empirical to fully ab-initio ones, e.g., density functional theory (DFT). This paper summarizes key (algorithmic) achievements that have allowed us to bring DFT+NEGF simulations closer to the dimensions and functionality of realistic systems. The possibility of leveraging graph neural networks and machine learning to speed up ab-initio device simulations is discussed as well.
Abstract:Biological neural networks do not only include long-term memory and weight multiplication capabilities, as commonly assumed in artificial neural networks, but also more complex functions such as short-term memory, short-term plasticity, and meta-plasticity - all collocated within each synapse. Here, we demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions. These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation. They can act as multi-functional hardware synapses in a class of bio-inspired deep neural networks (DNN) that make use of both long- and short-term synaptic dynamics and are capable of meta-learning or "learning-to-learn". The resulting bio-inspired DNN is then trained to play the video game Atari Pong, a complex reinforcement learning task in a dynamic environment. Our analysis shows that the energy consumption of the DNN with multi-functional memristive synapses decreases by about two orders of magnitude as compared to a pure GPU implementation. Based on this finding, we infer that memristive devices with a better emulation of the synaptic functionalities do not only broaden the applicability of neuromorphic computing, but could also improve the performance and energy costs of certain artificial intelligence applications.