Abstract:The Non-equilibrium Green's function (NEGF) formalism is a particularly powerful method to simulate the quantum transport properties of nanoscale devices such as transistors, photo-diodes, or memory cells, in the ballistic limit of transport or in the presence of various scattering sources such as electronphonon, electron-photon, or even electron-electron interactions. The inclusion of all these mechanisms has been first demonstrated in small systems, composed of a few atoms, before being scaled up to larger structures made of thousands of atoms. Also, the accuracy of the models has kept improving, from empirical to fully ab-initio ones, e.g., density functional theory (DFT). This paper summarizes key (algorithmic) achievements that have allowed us to bring DFT+NEGF simulations closer to the dimensions and functionality of realistic systems. The possibility of leveraging graph neural networks and machine learning to speed up ab-initio device simulations is discussed as well.
Abstract:Mechanical systems played a foundational role in computing history, and have regained interest due to their unique properties, such as low damping and the ability to process mechanical signals without transduction. However, recent efforts have primarily focused on elementary computations, implemented in systems based on pre-defined reservoirs, or in periodic systems such as arrays of buckling beams. Here, we numerically demonstrate a passive mechanical system -- in the form of a nonlinear mass-spring model -- that tackles a real-world benchmark for keyword spotting in speech signals. The model is organized in a hierarchical architecture combining feature extraction and continuous-time convolution, with each individual stage tailored to the physics of the considered mass-spring systems. For each step in the computation, a subsystem is designed by combining a small set of low-order polynomial potentials. These potentials act as fundamental components that interconnect a network of masses. In analogy to electronic circuit design, where complex functional circuits are constructed by combining basic components into hierarchical designs, we refer to this framework as springtronics. We introduce springtronic systems with hundreds of degrees of freedom, achieving speech classification accuracy comparable to existing sub-mW electronic systems.