Abstract:In the field of parameterized complexity theory, the study of graph width measures has been intimately connected with the development of width-based model checking algorithms for combinatorial properties on graphs. In this work, we introduce a general framework to convert a large class of width-based model-checking algorithms into algorithms that can be used to test the validity of graph-theoretic conjectures on classes of graphs of bounded width. Our framework is modular and can be applied with respect to several well-studied width measures for graphs, including treewidth and cliquewidth. As a quantitative application of our framework, we show that for several long-standing graph-theoretic conjectures, there exists an algorithm that takes a number $k$ as input and correctly determines in time double-exponential in $k^{O(1)}$ whether the conjecture is valid on all graphs of treewidth at most $k$. This improves significantly on upper bounds obtained using previously available techniques.
Abstract:In its most traditional setting, the main concern of optimization theory is the search for optimal solutions for instances of a given computational problem. A recent trend of research in artificial intelligence, called solution diversity, has focused on the development of notions of optimality that may be more appropriate in settings where subjectivity is essential. The idea is that instead of aiming at the development of algorithms that output a single optimal solution, the goal is to investigate algorithms that output a small set of sufficiently good solutions that are sufficiently diverse from one another. In this way, the user has the opportunity to choose the solution that is most appropriate to the context at hand. It also displays the richness of the solution space. When combined with techniques from parameterized complexity theory, the paradigm of diversity of solutions offers a powerful algorithmic framework to address problems of practical relevance. In this work, we investigate the impact of this combination in the field of Kemeny Rank Aggregation, a well-studied class of problems lying in the intersection of order theory and social choice theory and also in the field of order theory itself. In particular, we show that the Kemeny Rank Aggregation problem is fixed-parameter tractable with respect to natural parameters providing natural formalizations of the notions of diversity and of the notion of a sufficiently good solution. Our main results work both when considering the traditional setting of aggregation over linearly ordered votes, and in the more general setting where votes are partially ordered.