Abstract:Iris recognition is widely acknowledged for its exceptional accuracy in biometric authentication, traditionally relying on near-infrared (NIR) imaging. Recently, visible spectrum (VIS) imaging via accessible smartphone cameras has been explored for biometric capture. However, a thorough study of iris recognition using smartphone-captured 'High-Quality' VIS images and cross-spectral matching with previously enrolled NIR images has not been conducted. The primary challenge lies in capturing high-quality biometrics, a known limitation of smartphone cameras. This study introduces a novel Android application designed to consistently capture high-quality VIS iris images through automated focus and zoom adjustments. The application integrates a YOLOv3-tiny model for precise eye and iris detection and a lightweight Ghost-Attention U-Net (G-ATTU-Net) for segmentation, while adhering to ISO/IEC 29794-6 standards for image quality. The approach was validated using smartphone-captured VIS and NIR iris images from 47 subjects, achieving a True Acceptance Rate (TAR) of 96.57% for VIS images and 97.95% for NIR images, with consistent performance across various capture distances and iris colors. This robust solution is expected to significantly advance the field of iris biometrics, with important implications for enhancing smartphone security.
Abstract:User authentication is a pivotal element in security systems. Conventional methods including passwords, personal identification numbers, and identification tags are increasingly vulnerable to cyber-attacks. This paper suggests a paradigm shift towards biometric identification technology that leverages unique physiological or behavioral characteristics for user authenticity verification. Nevertheless, biometric solutions like fingerprints, iris patterns, facial and voice recognition are also susceptible to forgery and deception. We propose using Electroencephalogram (EEG) signals for individual identification to address this challenge. Derived from unique brain activities, these signals offer promising authentication potential and provide a novel means for liveness detection, thereby mitigating spoofing attacks. This study employs a public dataset initially compiled for fatigue analysis, featuring EEG data from 12 subjects recorded via an eight-channel OpenBCI helmet. This dataset extracts salient features from the EEG signals and trains a supervised multiclass Support Vector Machine classifier. Upon evaluation, the classifier model achieves a maximum accuracy of 92.9\%, leveraging ten features from each channel. Collectively, these findings highlight the viability of machine learning in implementing real-world, EEG-based biometric identification systems, thereby advancing user authentication technology.