Abstract:Motivated by deep learning regimes with multiple interacting yet distinct model components, we introduce learning diagrams, graphical depictions of training setups that capture parameterized learning as data rather than code. A learning diagram compiles to a unique loss function on which component models are trained. The result of training on this loss is a collection of models whose predictions ``agree" with one another. We show that a number of popular learning setups such as few-shot multi-task learning, knowledge distillation, and multi-modal learning can be depicted as learning diagrams. We further implement learning diagrams in a library that allows users to build diagrams of PyTorch and Flux.jl models. By implementing some classic machine learning use cases, we demonstrate how learning diagrams allow practitioners to build complicated models as compositions of smaller components, identify relationships between workflows, and manipulate models during or after training. Leveraging a category theoretic framework, we introduce a rigorous semantics for learning diagrams that puts such operations on a firm mathematical foundation.
Abstract:Achieving expressive 3D motion reconstruction and automatic generation for isolated sign words can be challenging, due to the lack of real-world 3D sign-word data, the complex nuances of signing motions, and the cross-modal understanding of sign language semantics. To address these challenges, we introduce SignAvatar, a framework capable of both word-level sign language reconstruction and generation. SignAvatar employs a transformer-based conditional variational autoencoder architecture, effectively establishing relationships across different semantic modalities. Additionally, this approach incorporates a curriculum learning strategy to enhance the model's robustness and generalization, resulting in more realistic motions. Furthermore, we contribute the ASL3DWord dataset, composed of 3D joint rotation data for the body, hands, and face, for unique sign words. We demonstrate the effectiveness of SignAvatar through extensive experiments, showcasing its superior reconstruction and automatic generation capabilities. The code and dataset are available on the project page.