Abstract:In this paper, we develop a hierarchical aerial computing framework composed of high altitude platform (HAP) and unmanned aerial vehicles (UAVs) to compute the fully offloaded tasks of terrestrial mobile users which are connected through an uplink non-orthogonal multiple access (UL-NOMA). In particular, the problem is formulated to minimize the AoI of all users with elastic tasks, by adjusting UAVs trajectory and resource allocation on both UAVs and HAP, which is restricted by the channel state information (CSI) uncertainty and multiple resource constraints of UAVs and HAP. In order to solve this non-convex optimization problem, two methods of multi-agent deep deterministic policy gradient (MADDPG) and federated reinforcement learning (FRL) are proposed to design the UAVs trajectory and obtain channel, power, and CPU allocations. It is shown that task scheduling significantly reduces the average AoI. This improvement is more pronounced for larger task sizes. On the one hand, it is shown that power allocation has a marginal effect on the average AoI compared to using full transmission power for all users. On the other hand, compared with traditional transmissions (fixed method) simulation result shows that our scheduling scheme has a lower average AoI.