Abstract:Research in machine learning for autism spectrum disorder (ASD) classification bears the promise to improve clinical diagnoses. However, recent studies in clinical imaging have shown the limited generalization of biomarkers across and beyond benchmark datasets. Despite increasing model complexity and sample size in neuroimaging, the classification performance of ASD remains far away from clinical application. This raises the question of how we can overcome these barriers to develop early biomarkers for ASD. One approach might be to rethink how we operationalize the theoretical basis of this disease in machine learning models. Here we introduced unsupervised graph representations that explicitly map the neural mechanisms of a core aspect of ASD, deficits in dyadic social interaction, as assessed by dual brain recordings, termed hyperscanning, and evaluated their predictive performance. The proposed method differs from existing approaches in that it is more suitable to capture social interaction deficits on a neural level and is applicable to young children and infants. First results from functional-near infrared spectroscopy data indicate potential predictive capacities of a task-agnostic, interpretable graph representation. This first effort to leverage interaction-related deficits on neural level to classify ASD may stimulate new approaches and methods to enhance existing models to achieve developmental ASD biomarkers in the future.
Abstract:Video recording is a widely used method for documenting infant and child behaviours in research and clinical practice. Video data has rarely been shared due to ethical concerns of confidentiality, although the need of shared large-scaled datasets remains increasing. This demand is even more imperative when data-driven computer-based approaches are involved, such as screening tools to complement clinical assessments. To share data while abiding by privacy protection rules, a critical question arises whether efforts at data de-identification reduce data utility? We addressed this question by showcasing the Prechtl's general movements assessment (GMA), an established and globally practised video-based diagnostic tool in early infancy for detecting neurological deficits, such as cerebral palsy. To date, no shared expert-annotated large data repositories for infant movement analyses exist. Such datasets would massively benefit training and recalibration of human assessors and the development of computer-based approaches. In the current study, sequences from a prospective longitudinal infant cohort with a total of 19451 available general movements video snippets were randomly selected for human clinical reasoning and computer-based analysis. We demonstrated for the first time that pseudonymisation by face-blurring video recordings is a viable approach. The video redaction did not affect classification accuracy for either human assessors or computer vision methods, suggesting an adequate and easy-to-apply solution for sharing movement video data. We call for further explorations into efficient and privacy rule-conforming approaches for deidentifying video data in scientific and clinical fields beyond movement assessments. These approaches shall enable sharing and merging stand-alone video datasets into large data pools to advance science and public health.