Abstract:The decomposition-based multi-objective evolutionary algorithm (MOEA/D) does not directly optimize a given multi-objective function $f$, but instead optimizes $N + 1$ single-objective subproblems of $f$ in a co-evolutionary manner. It maintains an archive of all non-dominated solutions found and outputs it as approximation to the Pareto front. Once the MOEA/D found all optima of the subproblems (the $g$-optima), it may still miss Pareto optima of $f$. The algorithm is then tasked to find the remaining Pareto optima directly by mutating the $g$-optima. In this work, we analyze for the first time how the MOEA/D with only standard mutation operators computes the whole Pareto front of the OneMinMax benchmark when the $g$-optima are a strict subset of the Pareto front. For standard bit mutation, we prove an expected runtime of $O(n N \log n + n^{n/(2N)} N \log n)$ function evaluations. Especially for the second, more interesting phase when the algorithm start with all $g$-optima, we prove an $\Omega(n^{(1/2)(n/N + 1)} \sqrt{N} 2^{-n/N})$ expected runtime. This runtime is super-polynomial if $N = o(n)$, since this leaves large gaps between the $g$-optima, which require costly mutations to cover. For power-law mutation with exponent $\beta \in (1, 2)$, we prove an expected runtime of $O\left(n N \log n + n^{\beta} \log n\right)$ function evaluations. The $O\left(n^{\beta} \log n\right)$ term stems from the second phase of starting with all $g$-optima, and it is independent of the number of subproblems $N$. This leads to a huge speedup compared to the lower bound for standard bit mutation. In general, our overall bound for power-law suggests that the MOEA/D performs best for $N = O(n^{\beta - 1})$, resulting in an $O(n^\beta \log n)$ bound. In contrast to standard bit mutation, smaller values of $N$ are better for power-law mutation, as it is capable of easily creating missing solutions.
Abstract:We propose a new, flexible approach for dynamically maintaining successful mutation rates in evolutionary algorithms using $k$-bit flip mutations. The algorithm adds successful mutation rates to an archive of promising rates that are favored in subsequent steps. Rates expire when their number of unsuccessful trials has exceeded a threshold, while rates currently not present in the archive can enter it in two ways: (i) via user-defined minimum selection probabilities for rates combined with a successful step or (ii) via a stagnation detection mechanism increasing the value for a promising rate after the current bit-flip neighborhood has been explored with high probability. For the minimum selection probabilities, we suggest different options, including heavy-tailed distributions. We conduct rigorous runtime analysis of the flexible evolutionary algorithm on the OneMax and Jump functions, on general unimodal functions, on minimum spanning trees, and on a class of hurdle-like functions with varying hurdle width that benefit particularly from the archive of promising mutation rates. In all cases, the runtime bounds are close to or even outperform the best known results for both stagnation detection and heavy-tailed mutations.
Abstract:The target set selection problem (TSS) asks for a set of vertices such that an influence spreading process started in these vertices reaches the whole graph. The current state of the art for this NP-hard problem are three recently proposed randomized search heuristics, namely a biased random-key genetic algorithm (BRKGA) obtained from extensive parameter tuning, a max-min ant system (MMAS), and a MMAS using Q-learning with a graph convolutional network. We show that the BRKGA with two simple modifications and without the costly parameter tuning obtains significantly better results. Our first modification is to simply choose all parameters of the BRKGA in each iteration randomly from a power-law distribution. The resulting parameterless BRKGA is already competitive with the tuned BRKGA, as our experiments on the previously used benchmarks show. We then add a natural greedy heuristic, namely to repeatedly discard small-degree vertices that are not necessary for reaching the whole graph. The resulting algorithm consistently outperforms all of the state-of-the-art algorithms. Besides providing a superior algorithm for the TSS problem, this work shows that randomized parameter choices and elementary greedy heuristics can give better results than complex algorithms and costly parameter tuning.
Abstract:Finding a large set of optima in a multimodal optimization landscape is a challenging task. Classical population-based evolutionary algorithms typically converge only to a single solution. While this can be counteracted by applying niching strategies, the number of optima is nonetheless trivially bounded by the population size. Estimation-of-distribution algorithms (EDAs) are an alternative, maintaining a probabilistic model of the solution space instead of a population. Such a model is able to implicitly represent a solution set far larger than any realistic population size. To support the study of how optimization algorithms handle large sets of optima, we propose the test function EqualBlocksOneMax (EBOM). It has an easy fitness landscape with exponentially many optima. We show that the bivariate EDA mutual-information-maximizing input clustering, without any problem-specific modification, quickly generates a model that behaves very similarly to a theoretically ideal model for EBOM, which samples each of the exponentially many optima with the same maximal probability. We also prove via mathematical means that no univariate model can come close to having this property: If the probability to sample an optimum is at least inverse-polynomial, there is a Hamming ball of logarithmic radius such that, with high probability, each sample is in this ball.
Abstract:With apparently all research on estimation-of-distribution algorithms (EDAs) concentrated on pseudo-Boolean optimization and permutation problems, we undertake the first steps towards using EDAs for problems in which the decision variables can take more than two values, but which are not permutation problems. To this aim, we propose a natural way to extend the known univariate EDAs to such variables. Different from a naive reduction to the binary case, it avoids additional constraints. Since understanding genetic drift is crucial for an optimal parameter choice, we extend the known quantitative analysis of genetic drift to EDAs for multi-valued variables. Roughly speaking, when the variables take $r$ different values, the time for genetic drift to become significant is $r$ times shorter than in the binary case. Consequently, the update strength of the probabilistic model has to be chosen $r$ times lower now. To investigate how desired model updates take place in this framework, we undertake a mathematical runtime analysis on the $r$-valued LeadingOnes problem. We prove that with the right parameters, the multi-valued UMDA solves this problem efficiently in $O(r\log(r)^2 n^2 \log(n))$ function evaluations. Overall, our work shows that EDAs can be adjusted to multi-valued problems, and it gives advice on how to set the main parameters.
Abstract:Most evolutionary algorithms (EAs) used in practice employ crossover. In contrast, only for few and mostly artificial examples a runtime advantage from crossover could be proven with mathematical means. The most convincing such result shows that the $(\mu+1)$ genetic algorithm (GA) with population size $\mu=O(n)$ optimizes jump functions with gap size $k \ge 3$ in time $O(n^k / \mu + n^{k-1}\log n)$, beating the $\Theta(n^k)$ runtime of many mutation-based EAs. This result builds on a proof that the GA occasionally and then for an expected number of $\Omega(\mu^2)$ iterations has a population that is not dominated by a single genotype. In this work, we show that this diversity persist with high probability for a time exponential in $\mu$ (instead of quadratic). From this better understanding of the population diversity, we obtain stronger runtime guarantees, among them the statement that for all $c\ln(n)\le\mu \le n/\log n$, with $c$ a suitable constant, the runtime of the $(\mu+1)$ GA on $\mathrm{Jump}_k$, with $k \ge 3$, is $O(n^{k-1})$. Consequently, already with logarithmic population sizes, the GA gains a speed-up of order $\Omega(n)$ from crossover.
Abstract:Run time analysis of evolutionary algorithms recently makes significant progress in linking algorithm performance to algorithm parameters. However, settings that study the impact of problem parameters are rare. The recently proposed W-model provides a good framework for such analyses, generating pseudo-Boolean optimization problems with tunable properties. We initiate theoretical research of the W-model by studying how one of its properties -- neutrality -- influences the run time of random local search. Neutrality creates plateaus in the search space by first performing a majority vote for subsets of the solution candidate and then evaluating the smaller-dimensional string via a low-level fitness function. We prove upper bounds for the expected run time of random local search on this MAJORITY problem for its entire parameter spectrum. To this end, we provide a theorem, applicable to many optimization algorithms, that links the run time of MAJORITY with its symmetric version HASMAJORITY, where a sufficient majority is needed to optimize the subset. We also introduce a generalized version of classic drift theorems as well as a generalized version of Wald's equation, both of which we believe to be of independent interest.
Abstract:It has long been observed that the performance of evolutionary algorithms and other randomized search heuristics can benefit from a non-static choice of the parameters that steer their optimization behavior. Mechanisms that identify suitable configurations on the fly ("parameter control") or via a dedicated training process ("dynamic algorithm configuration") are therefore an important component of modern evolutionary computation frameworks. Several approaches to address the dynamic parameter setting problem exist, but we barely understand which ones to prefer for which applications. As in classical benchmarking, problem collections with a known ground truth can offer very meaningful insights in this context. Unfortunately, settings with well-understood control policies are very rare. One of the few exceptions for which we know which parameter settings minimize the expected runtime is the LeadingOnes problem. We extend this benchmark by analyzing optimal control policies that can select the parameters only from a given portfolio of possible values. This also allows us to compute optimal parameter portfolios of a given size. We demonstrate the usefulness of our benchmarks by analyzing the behavior of the DDQN reinforcement learning approach for dynamic algorithm configuration.
Abstract:In their recent work, Lehre and Nguyen (FOGA 2019) show that the univariate marginal distribution algorithm (UMDA) needs time exponential in the parent populations size to optimize the DeceptiveLeadingBlocks (DLB) problem. They conclude from this result that univariate EDAs have difficulties with deception and epistasis. In this work, we show that this negative finding is caused by an unfortunate choice of the parameters of the UMDA. When the population sizes are chosen large enough to prevent genetic drift, then the UMDA optimizes the DLB problem with high probability with at most $\lambda(\frac{n}{2} + 2 e \ln n)$ fitness evaluations. Since an offspring population size $\lambda$ of order $n \log n$ can prevent genetic drift, the UMDA can solve the DLB problem with $O(n^2 \log n)$ fitness evaluations. In contrast, for classic evolutionary algorithms no better run time guarantee than $O(n^3)$ is known (which we prove to be tight for the ${(1+1)}$ EA), so our result rather suggests that the UMDA can cope well with deception and epistatis. From a broader perspective, our result shows that the UMDA can cope better with local optima than evolutionary algorithms; such a result was previously known only for the compact genetic algorithm. Together with the result of Lehre and Nguyen, our result for the first time rigorously proves that running EDAs in the regime with genetic drift can lead to drastic performance losses.
Abstract:Estimation-of-distribution algorithms (EDAs) are general metaheuristics used in optimization that represent a more recent alternative to classical approaches like evolutionary algorithms. In a nutshell, EDAs typically do not directly evolve populations of search points but build probabilistic models of promising solutions by repeatedly sampling and selecting points from the underlying search space. Recently, there has been made significant progress in the theoretical understanding of EDAs. This article provides an up-to-date overview of the most commonly analyzed EDAs and the most recent theoretical results in this area. In particular, emphasis is put on the runtime analysis of simple univariate EDAs, including a description of typical benchmark functions and tools for the analysis. Along the way, open problems and directions for future research are described.