Abstract:Coronary heart disease is a common cause of death despite being preventable. To treat the underlying plaque deposits in the arterial walls, intravascular optical coherence tomography can be used by experts to detect and characterize the lesions. In clinical routine, hundreds of images are acquired for each patient which requires automatic plaque detection for fast and accurate decision support. So far, automatic approaches rely on classic machine learning methods and deep learning solutions have rarely been studied. Given the success of deep learning methods with other imaging modalities, a thorough understanding of deep learning-based plaque detection for future clinical decision support systems is required. We address this issue with a new dataset consisting of in-vivo patient images labeled by three trained experts. Using this dataset, we employ state-of-the-art deep learning models that directly learn plaque classification from the images. For improved performance, we study different transfer learning approaches. Furthermore, we investigate the use of cartesian and polar image representations and employ data augmentation techniques tailored to each representation. We fuse both representations in a multi-path architecture for more effective feature exploitation. Last, we address the challenge of plaque differentiation in addition to detection. Overall, we find that our combined model performs best with an accuracy of 91.7%, a sensitivity of 90.9% and a specificity of 92.4%. Our results indicate that building a deep learning-based clinical decision support system for plaque detection is feasible.
Abstract:Deep learning methods have shown impressive results for a variety of medical problems over the last few years. However, datasets tend to be small due to time-consuming annotation. As datasets with different patients are often very heterogeneous generalization to new patients can be difficult. This is complicated further if large differences in image acquisition can occur, which is common during intravascular optical coherence tomography for coronary plaque imaging. We address this problem with an adversarial training strategy where we force a part of a deep neural network to learn features that are independent of patient- or acquisitionspecific characteristics. We compare our regularization method to typical data augmentation strategies and show that our approach improves performance for a small medical dataset.
Abstract:Advanced atherosclerosis in the coronary arteries is one of the leading causes of deaths worldwide while being preventable and treatable. In order to image atherosclerotic lesions (plaque), intravascular optical coherence tomography (IVOCT) can be used. The technique provides high-resolution images of arterial walls which allows for early plaque detection by experts. Due to the vast amount of IVOCT images acquired in clinical routines, automatic plaque detection has been addressed. For example, attenuation profiles in single A-Scans of IVOCT images are examined to detect plaque. We address automatic plaque classification from entire IVOCT images, the cross-sectional view of the artery, using deep feature learning. In this way, we take context between A-Scans into account and we directly learn relevant features from the image source without the need for handcrafting features.