Abstract:Low-latency traffic prediction is vital for smart city traffic management. Federated Learning has emerged as a promising technique for Traffic Prediction (FLTP), offering several advantages such as privacy preservation, reduced communication overhead, improved prediction accuracy, and enhanced adaptability to changing traffic conditions. However, majority of the current FLTP frameworks lack a real-time model updating scheme, which hinders their ability to continuously incorporate new incoming traffic data and adapt effectively to the changing dynamics of traffic trends. Another concern with the existing FLTP frameworks is their reliance on the conventional FL model aggregation method, which involves assigning an identical model (i.e., the global model) to all traffic monitoring devices to predict their individual local traffic trends, thereby neglecting the non-IID characteristics of traffic data collected in different locations. Building upon these findings and harnessing insights from reinforcement learning, we propose NeighborFL, an individualized real-time federated learning scheme that introduces a haversine distance-based and error-driven, personalized local models grouping heuristic from the perspective of each individual traffic node. This approach allows NeighborFL to create location-aware and tailored prediction models for each client while fostering collaborative learning. Simulations demonstrate the effectiveness of NeighborFL, offering improved real-time prediction accuracy over three baseline models, with one experimental setting showing a 16.9% reduction in MSE value compared to a naive FL setting.
Abstract:Federated Learning (FL) is a privacy-preserving machine learning (ML) technology that enables collaborative training and learning of a global ML model based on aggregating distributed local model updates. However, security and privacy guarantees could be compromised due to malicious participants and the centralized FL server. This article proposed a bi-level blockchained architecture for secure federated learning-based traffic prediction. The bottom and top layer blockchain store the local model and global aggregated parameters accordingly, and the distributed homomorphic-encrypted federated averaging (DHFA) scheme addresses the secure computation problems. We propose the partial private key distribution protocol and a partially homomorphic encryption/decryption scheme to achieve the distributed privacy-preserving federated averaging model. We conduct extensive experiments to measure the running time of DHFA operations, quantify the read and write performance of the blockchain network, and elucidate the impacts of varying regional group sizes and model complexities on the resulting prediction accuracy for the online traffic flow prediction task. The results indicate that the proposed system can facilitate secure and decentralized federated learning for real-world traffic prediction tasks.
Abstract:Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenges in traffic prediction, this survey aims to provide a comprehensive overview of traffic prediction methodologies. Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods, due to their recent success and potential in traffic prediction, with an emphasis on multivariate traffic time series modeling. We first provide a list and explanation of the various data types and resources used in the literature. Next, the essential data preprocessing methods within the traffic prediction context are categorized, and the prediction methods and applications are subsequently summarized. Lastly, we present primary research challenges in traffic prediction and discuss some directions for future research.