Abstract:The features in many prediction models naturally take the form of a hierarchy. The lower levels represent individuals or events. These units group naturally into locations and intervals or other aggregates, often at multiple levels. Levels of groupings may intersect and join, much as relational database tables do. Besides representing the structure of the data, predictive features in hierarchical models can be assigned to their proper levels. Such models lend themselves to hierarchical Bayes solution methods that ``share'' results of inference between groups by generalizing over the case of individual models for each group versus one model that aggregates all groups into one. In this paper we show our work-in-progress applying a hierarchical Bayesian model to forecast purchases throughout the day at store franchises, with groupings over locations and days of the week. We demonstrate using the \textsf{stan} package on individual sales transaction data collected over the course of a year. We show how this solves the dilemma of having limited data and hence modest accuracy for each day and location, while being able to scale to a large number of locations with improved accuracy.
Abstract:In the past few years, Artificial Intelligence (AI) has garnered attention from various industries including financial services (FS). AI has made a positive impact in financial services by enhancing productivity and improving risk management. While AI can offer efficient solutions, it has the potential to bring unintended consequences. One such consequence is the pronounced effect of AI-related unfairness and attendant fairness-related harms. These fairness-related harms could involve differential treatment of individuals; for example, unfairly denying a loan to certain individuals or groups of individuals. In this paper, we focus on identifying and mitigating individual unfairness and leveraging some of the recently published techniques in this domain, especially as applicable to the credit adjudication use case. We also investigate the extent to which techniques for achieving individual fairness are effective at achieving group fairness. Our main contribution in this work is functionalizing a two-step training process which involves learning a fair similarity metric from a group sense using a small portion of the raw data and training an individually "fair" classifier using the rest of the data where the sensitive features are excluded. The key characteristic of this two-step technique is related to its flexibility, i.e., the fair metric obtained in the first step can be used with any other individual fairness algorithms in the second step. Furthermore, we developed a second metric (distinct from the fair similarity metric) to determine how fairly a model is treating similar individuals. We use this metric to compare a "fair" model against its baseline model in terms of their individual fairness value. Finally, some experimental results corresponding to the individual unfairness mitigation techniques are presented.