Abstract:Image quality databases are used to train models for predicting subjective human perception. However, most existing databases focus on distortions commonly found in digital media and not in natural conditions. Affine transformations are particularly relevant to study, as they are among the most commonly encountered by human observers in everyday life. This Data Descriptor presents a set of human responses to suprathreshold affine image transforms (rotation, translation, scaling) and Gaussian noise as convenient reference to compare with previously existing image quality databases. The responses were measured using well established psychophysics: the Maximum Likelihood Difference Scaling method. The set contains responses to 864 distorted images. The experiments involved 105 observers and more than 20000 comparisons of quadruples of images. The quality of the dataset is ensured because (a) it reproduces the classical Pi\'eron's law, (b) it reproduces classical absolute detection thresholds, and (c) it is consistent with conventional image quality databases but improves them according to Group-MAD experiments.
Abstract:The aim of ordinal classification is to predict the ordered labels of the output from a set of observed inputs. Interval-valued data refers to data in the form of intervals. For the first time, interval-valued data and interval-valued functional data are considered as inputs in an ordinal classification problem. Six ordinal classifiers for interval data and interval-valued functional data are proposed. Three of them are parametric, one of them is based on ordinal binary decompositions and the other two are based on ordered logistic regression. The other three methods are based on the use of distances between interval data and kernels on interval data. One of the methods uses the weighted $k$-nearest-neighbor technique for ordinal classification. Another method considers kernel principal component analysis plus an ordinal classifier. And the sixth method, which is the method that performs best, uses a kernel-induced ordinal random forest. They are compared with na\"ive approaches in an extensive experimental study with synthetic and original real data sets, about human global development, and weather data. The results show that considering ordering and interval-valued information improves the accuracy. The source code and data sets are available at https://github.com/aleixalcacer/OCFIVD.