Abstract:Traditional depression screening methods, such as the PHQ-9, are particularly challenging for children in pediatric primary care due to practical limitations. AI has the potential to help, but the scarcity of annotated datasets in mental health, combined with the computational costs of training, highlights the need for efficient, zero-shot approaches. In this work, we investigate the feasibility of state-of-the-art LLMs for depressive symptom extraction in pediatric settings (ages 6-24). This approach aims to complement traditional screening and minimize diagnostic errors. Our findings show that all LLMs are 60% more efficient than word match, with Flan leading in precision (average F1: 0.65, precision: 0.78), excelling in the extraction of more rare symptoms like "sleep problems" (F1: 0.92) and "self-loathing" (F1: 0.8). Phi strikes a balance between precision (0.44) and recall (0.60), performing well in categories like "Feeling depressed" (0.69) and "Weight change" (0.78). Llama 3, with the highest recall (0.90), overgeneralizes symptoms, making it less suitable for this type of analysis. Challenges include the complexity of clinical notes and overgeneralization from PHQ-9 scores. The main challenges faced by LLMs include navigating the complex structure of clinical notes with content from different times in the patient trajectory, as well as misinterpreting elevated PHQ-9 scores. We finally demonstrate the utility of symptom annotations provided by Flan as features in an ML algorithm, which differentiates depression cases from controls with high precision of 0.78, showing a major performance boost compared to a baseline that does not use these features.
Abstract:Current text generation models are trained using real data which can potentially contain sensitive information, such as confidential patient information and the like. Under certain conditions output of the training data which they have memorised can be triggered, exposing sensitive data. To mitigate against this risk we propose a safer alternative which sees fragmented data in the form of domain-specific short phrases randomly grouped together shared instead of full texts. Thus, text fragments that could re-identify an individual cannot be reproduced by the model in one sequence, giving significant protection against linkage attacks. We fine-tune several state-of-the-art LLMs using meaningful syntactic chunks to explore their utility. In particular, we fine-tune BERT-based models to predict two cardiovascular diagnoses. Our results demonstrate the capacity of LLMs to benefit from the pre-trained knowledge and deliver classification results when fine-tuned with fragmented data comparable to fine-tuning with full training data.