Abstract:The field of neuroscience is experiencing rapid growth in the complexity and quantity of the recorded neural activity allowing us unprecedented access to its dynamics in different brain areas. One of the major goals of neuroscience is to find interpretable descriptions of what the brain represents and computes by trying to explain complex phenomena in simple terms. Considering this task from the perspective of dimensionality reduction provides an entry point into principled mathematical techniques allowing us to discover these representations directly from experimental data, a key step to developing rich yet comprehensible models for brain function. In this work, we employ two real-world binary datasets describing the spontaneous neuronal activity of two laboratory mice over time, and we aim to their efficient low-dimensional representation. We develop an innovative, robust to noise, dictionary learning algorithm for the identification of patterns with synchronous activity and we also extend it to identify patterns within larger time windows. The results on the classification accuracy for the discrimination between the clean and the adversarial-noisy activation patterns obtained by an SVM classifier highlight the efficacy of the proposed scheme, and the visualization of the dictionary's distribution demonstrates the multifarious information that we obtain from it.
Abstract:Eye movements during text reading can provide insights about reading disorders. Via eye-trackers, we can measure when, where and how eyes move with relation to the words they read. Machine Learning (ML) algorithms can decode this information and provide differential analysis. This work developed DysLexML, a screening tool for developmental dyslexia that applies various ML algorithms to analyze fixation points recorded via eye-tracking during silent reading of children. It comparatively evaluated its performance using measurements collected in a systematic field study with 69 native Greek speakers, children, 32 of which were diagnosed as dyslexic by the official governmental agency for diagnosing learning and reading difficulties in Greece. We examined a large set of features based on statistical properties of fixations and saccadic movements and identified the ones with prominent predictive power, performing dimensionality reduction. Specifically, DysLexML achieves its best performance using linear SVM, with an a accuracy of 97 %, with a small feature set, namely saccade length, number of short forward movements, and number of multiply fixated words. Furthermore, we analyzed the impact of noise on the fixation positions and showed that DysLexML is accurate and robust in the presence of noise. These encouraging results set the basis for developing screening tools in less controlled, larger-scale environments, with inexpensive eye-trackers, potentially reaching a larger population for early intervention.