Abstract:The ever-increasing demand for high-quality and heterogeneous wireless communication services has driven extensive research on dynamic optimization strategies in wireless networks. Among several possible approaches, multi-agent deep reinforcement learning (MADRL) has emerged as a promising method to address a wide range of complex optimization problems like power control. However, the seamless application of MADRL to a variety of network optimization problems faces several challenges related to convergence. In this paper, we present the use of graphs as communication-inducing structures among distributed agents as an effective means to mitigate these challenges. Specifically, we harness graph neural networks (GNNs) as neural architectures for policy parameterization to introduce a relational inductive bias in the collective decision-making process. Most importantly, we focus on modeling the dynamic interactions among sets of neighboring agents through the introduction of innovative methods for defining a graph-induced framework for integrated communication and learning. Finally, the superior generalization capabilities of the proposed methodology to larger networks and to networks with different user categories is verified through simulations.
Abstract:The advent of novel 5G services and applications with binding latency requirements and guaranteed Quality of Service (QoS) hastened the need to incorporate autonomous and proactive decision-making in network management procedures. The objective of our study is to provide a thorough analysis of predictive latency within 5G networks by utilizing real-world network data that is accessible to mobile network operators (MNOs). In particular, (i) we present an analytical formulation of the user-plane latency as a Hypoexponential distribution, which is validated by means of a comparative analysis with empirical measurements, and (ii) we conduct experimental results of probabilistic regression, anomaly detection, and predictive forecasting leveraging on emerging domains in Machine Learning (ML), such as Bayesian Learning (BL) and Machine Learning on Graphs (GML). We test our predictive framework using data gathered from scenarios of vehicular mobility, dense-urban traffic, and social gathering events. Our results provide valuable insights into the efficacy of predictive algorithms in practical applications.
Abstract:Federated Learning (FL) has emerged as a promising framework for distributed training of AI-based services, applications, and network procedures in 6G. One of the major challenges affecting the performance and efficiency of 6G wireless FL systems is the massive scheduling of user devices over resource-constrained channels. In this work, we argue that the uplink scheduling of FL client devices is a problem with a rich relational structure. To address this challenge, we propose a novel, energy-efficient, and importance-aware metric for client scheduling in FL applications by leveraging Unsupervised Graph Representation Learning (UGRL). Our proposed approach introduces a relational inductive bias in the scheduling process and does not require the collection of training feedback information from client devices, unlike state-of-the-art importance-aware mechanisms. We evaluate our proposed solution against baseline scheduling algorithms based on recently proposed metrics in the literature. Results show that, when considering scenarios of nodes exhibiting spatial relations, our approach can achieve an average gain of up to 10% in model accuracy and up to 17 times in energy efficiency compared to state-of-the-art importance-aware policies.