Abstract:This paper presents a character-based approach for enhancing writer retrieval performance in the context of Greek papyri. Our contribution lies in introducing character-level annotations for frequently used characters, in our case the trigram kai and four additional letters (epsilon, kappa, mu, omega), in Greek texts. We use a state-of-the-art writer retrieval approach based on NetVLAD and compare a character-level-based feature aggregation method against the current default baseline of using small patches located at SIFT keypoint locations for building the page descriptors. We demonstrate that by using only about 15 characters per page, we are able to boost the performance up to 4% mAP (a relative improvement of 11%) on the GRK-120 dataset. Additionally, our qualitative analysis offers insights into the similarity scores of SIFT patches and specific characters. We publish the dataset with character-level annotations, including a quality label and our binarized images for further research.
Abstract:This paper introduces SAGHOG, a self-supervised pretraining strategy for writer retrieval using HOG features of the binarized input image. Our preprocessing involves the application of the Segment Anything technique to extract handwriting from various datasets, ending up with about 24k documents, followed by training a vision transformer on reconstructing masked patches of the handwriting. SAGHOG is then finetuned by appending NetRVLAD as an encoding layer to the pretrained encoder. Evaluation of our approach on three historical datasets, Historical-WI, HisFrag20, and GRK-Papyri, demonstrates the effectiveness of SAGHOG for writer retrieval. Additionally, we provide ablation studies on our architecture and evaluate un- and supervised finetuning. Notably, on HisFrag20, SAGHOG outperforms related work with a mAP of 57.2 % - a margin of 11.6 % to the current state of the art, showcasing its robustness on challenging data, and is competitive on even small datasets, e.g. GRK-Papyri, where we achieve a Top-1 accuracy of 58.0%.
Abstract:This paper proposes a deep-learning-based approach to writer retrieval and identification for papyri, with a focus on identifying fragments associated with a specific writer and those corresponding to the same image. We present a novel neural network architecture that combines a residual backbone with a feature mixing stage to improve retrieval performance, and the final descriptor is derived from a projection layer. The methodology is evaluated on two benchmarks: PapyRow, where we achieve a mAP of 26.6 % and 24.9 % on writer and page retrieval, and HisFragIR20, showing state-of-the-art performance (44.0 % and 29.3 % mAP). Furthermore, our network has an accuracy of 28.7 % for writer identification. Additionally, we conduct experiments on the influence of two binarization techniques on fragments and show that binarizing does not enhance performance. Our code and models are available to the community.
Abstract:This paper presents an unsupervised approach for writer retrieval based on clustering SIFT descriptors detected at keypoint locations resulting in pseudo-cluster labels. With those cluster labels, a residual network followed by our proposed NetRVLAD, an encoding layer with reduced complexity compared to NetVLAD, is trained on 32x32 patches at keypoint locations. Additionally, we suggest a graph-based reranking algorithm called SGR to exploit similarities of the page embeddings to boost the retrieval performance. Our approach is evaluated on two historical datasets (Historical-WI and HisIR19). We include an evaluation of different backbones and NetRVLAD. It competes with related work on historical datasets without using explicit encodings. We set a new State-of-the-art on both datasets by applying our reranking scheme and show that our approach achieves comparable performance on a modern dataset as well.