Abstract:Differential Diagnosis (DDx) is a fundamental yet complex aspect of clinical decision-making, in which physicians iteratively refine a ranked list of possible diseases based on symptoms, antecedents, and medical knowledge. While recent advances in large language models have shown promise in supporting DDx, existing approaches face key limitations, including single-dataset evaluations, isolated optimization of components, unrealistic assumptions about complete patient profiles, and single-attempt diagnosis. We introduce a Modular Explainable DDx Agent (MEDDxAgent) framework designed for interactive DDx, where diagnostic reasoning evolves through iterative learning, rather than assuming a complete patient profile is accessible. MEDDxAgent integrates three modular components: (1) an orchestrator (DDxDriver), (2) a history taking simulator, and (3) two specialized agents for knowledge retrieval and diagnosis strategy. To ensure robust evaluation, we introduce a comprehensive DDx benchmark covering respiratory, skin, and rare diseases. We analyze single-turn diagnostic approaches and demonstrate the importance of iterative refinement when patient profiles are not available at the outset. Our broad evaluation demonstrates that MEDDxAgent achieves over 10% accuracy improvements in interactive DDx across both large and small LLMs, while offering critical explainability into its diagnostic reasoning process.
Abstract:This work concerns control-oriented and structure-preserving learning of low-dimensional approximations of high-dimensional physical systems, with a focus on mechanical systems. We investigate the integration of neural autoencoders in model order reduction, while at the same time preserving Hamiltonian or Lagrangian structures. We focus on extensively evaluating the considered methodology by performing simulation and control experiments on large mass-spring-damper networks, with hundreds of states. The empirical findings reveal that compressed latent dynamics with less than 5 degrees of freedom can accurately reconstruct the original systems' transient and steady-state behavior with a relative total error of around 4\%, while simultaneously accurately reconstructing the total energy. Leveraging this system compression technique, we introduce a model-based controller that exploits the mathematical structure of the compressed model to regulate the configuration of heavily underactuated mechanical systems.