enliteAI
Abstract:The ongoing transition to renewable energy is increasing the share of fluctuating power sources like wind and solar, raising power grid volatility and making grid operation increasingly complex and costly. In our prior work, we have introduced a congestion management approach consisting of a redispatching optimizer combined with a machine learning-based topology optimization agent. Compared to a typical redispatching-only agent, it was able to keep a simulated grid in operation longer while at the same time reducing operational cost. Our approach also ranked 1st in the L2RPN 2022 competition initiated by RTE, Europe's largest grid operator. The aim of this paper is to bring this promising technology closer to the real world of power grid operation. We deploy RL-based agents in two settings resembling established workflows, AI-assisted day-ahead planning and realtime control, in an attempt to show the benefits and caveats of this new technology. We then analyse congestion, redispatching and switching profiles, and elementary sensitivity analysis providing a glimpse of operation robustness. While there is still a long way to a real control room, we believe that this paper and the associated prototypes help to narrow the gap and pave the way for a safe deployment of RL agents in tomorrow's power grids.
Abstract:The energy sector is facing rapid changes in the transition towards clean renewable sources. However, the growing share of volatile, fluctuating renewable generation such as wind or solar energy has already led to an increase in power grid congestion and network security concerns. Grid operators mitigate these by modifying either generation or demand (redispatching, curtailment, flexible loads). Unfortunately, redispatching of fossil generators leads to excessive grid operation costs and higher emissions, which is in direct opposition to the decarbonization of the energy sector. In this paper, we propose an AlphaZero-based grid topology optimization agent as a non-costly, carbon-free congestion management alternative. Our experimental evaluation confirms the potential of topology optimization for power grid operation, achieves a reduction of the average amount of required redispatching by 60%, and shows the interoperability with traditional congestion management methods. Our approach also ranked 1st in the WCCI 2022 Learning to Run a Power Network (L2RPN) competition. Based on our findings, we identify and discuss open research problems as well as technical challenges for a productive system on a real power grid.
Abstract:This work tackles the problem of temporally coherent face anonymization in natural video streams.We propose JaGAN, a two-stage system starting with detecting and masking out faces with black image patches in all individual frames of the video. The second stage leverages a privacy-preserving Video Generative Adversarial Network designed to inpaint the missing image patches with artificially generated faces. Our initial experiments reveal that image based generative models are not capable of inpainting patches showing temporal coherent appearance across neighboring video frames. To address this issue we introduce a newly curated video collection, which is made publicly available for the research community along with this paper. We also introduce the Identity Invariance Score IdI as a means to quantify temporal coherency between neighboring frames.