Abstract:In this work we present a new State-of-The-Art on the text-to-video retrieval task on MSR-VTT, LSMDC, MSVD, YouCook2 and TGIF obtained by a single model. Three different data sources are combined: weakly-supervised videos, crowd-labeled text-image pairs and text-video pairs. A careful analysis of available pre-trained networks helps to choose the best prior-knowledge ones. We introduce three-stage training procedure that provides high transfer knowledge efficiency and allows to use noisy datasets during training without prior knowledge degradation. Additionally, double positional encoding is used for better fusion of different modalities and a simple method for non-square inputs processing is suggested.
Abstract:We present a new state-of-the-art on the text to video retrieval task on MSRVTT and LSMDC benchmarks where our model outperforms all previous solutions by a large margin. Moreover, state-of-the-art results are achieved with a single model on two datasets without finetuning. This multidomain generalisation is achieved by a proper combination of different video caption datasets. We show that training on different datasets can improve test results of each other. Additionally we check intersection between many popular datasets and found that MSRVTT has a significant overlap between the test and the train parts, and the same situation is observed for ActivityNet.