Abstract:Policy search methods are crucial in reinforcement learning, offering a framework to address continuous state-action and partially observable problems. However, the complexity of exploring vast policy spaces can lead to significant inefficiencies. Reducing the policy space through policy compression emerges as a powerful, reward-free approach to accelerate the learning process. This technique condenses the policy space into a smaller, representative set while maintaining most of the original effectiveness. Our research focuses on determining the necessary sample size to learn this compressed set accurately. We employ R\'enyi divergence to measure the similarity between true and estimated policy distributions, establishing error bounds for good approximations. To simplify the analysis, we employ the $l_1$ norm, determining sample size requirements for both model-based and model-free settings. Finally, we correlate the error bounds from the $l_1$ norm with those from R\'enyi divergence, distinguishing between policies near the vertices and those in the middle of the policy space, to determine the lower and upper bounds for the required sample sizes.