Abstract:In recent years, light fields have become a major research topic and their applications span across the entire spectrum of classical image processing. Among the different methods used to capture a light field are the lenslet cameras, such as those developed by Lytro. While these cameras give a lot of freedom to the user, they also create light field views that suffer from a number of artefacts. As a result, it is common to ignore a significant subset of these views when doing high-level light field processing. We propose a pipeline to process light field views, first with an enhanced processing of RAW images to extract subaperture images, then a colour correction process using a recent colour transfer algorithm, and finally a denoising process using a state of the art light field denoising approach. We show that our method improves the light field quality on many levels, by reducing ghosting artefacts and noise, as well as retrieving more accurate and homogeneous colours across the sub-aperture images.
Abstract:We propose several cost functions for registration of shapes encoded with Euclidean and/or non-Euclidean information (unit vectors). Our framework is assessed for estimation of both rigid and non-rigid transformations between the target and model shapes corresponding to 2D contours and 3D surfaces. The experimental results obtained confirm that using the combination of a point's position and unit normal vector in a cost function can enhance the registration results compared to state of the art methods.
Abstract:We present a flexible approach to colour transfer inspired by techniques recently proposed for shape registration. Colour distributions of the palette and target images are modelled with Gaussian Mixture Models (GMMs) that are robustly registered to infer a non linear parametric transfer function. We show experimentally that our approach compares well to current techniques both quantitatively and qualitatively. Moreover, our technique is computationally the fastest and can take efficient advantage of parallel processing architectures for recolouring images and videos. Our transfer function is parametric and hence can be stored in memory for later usage and also combined with other computed transfer functions to create interesting visual effects. Overall this paper provides a fast user friendly approach to recolouring of image and video materials.