Abstract:The viability of automated driving is heavily dependent on the performance of perception systems to provide real-time accurate and reliable information for robust decision-making and maneuvers. These systems must perform reliably not only under ideal conditions, but also when challenged by natural and adversarial driving factors. Both of these types of interference can lead to perception errors and delays in detection and classification. Hence, it is essential to assess the robustness of the perception systems of automated vehicles (AVs) and explore strategies for making perception more reliable. We approach this problem by evaluating perception performance using predictive sensitivity quantification based on an ensemble of models, capturing model disagreement and inference variability across multiple models, under adverse driving scenarios in both simulated environments and real-world conditions. A notional architecture for assessing perception performance is proposed. A perception assessment criterion is developed based on an AV's stopping distance at a stop sign on varying road surfaces, such as dry and wet asphalt, and vehicle speed. Five state-of-the-art computer vision models are used, including YOLO (v8-v9), DEtection TRansformer (DETR50, DETR101), Real-Time DEtection TRansformer (RT-DETR)in our experiments. Diminished lighting conditions, e.g., resulting from the presence of fog and low sun altitude, have the greatest impact on the performance of the perception models. Additionally, adversarial road conditions such as occlusions of roadway objects increase perception sensitivity and model performance drops when faced with a combination of adversarial road conditions and inclement weather conditions. Also, it is demonstrated that the greater the distance to a roadway object, the greater the impact on perception performance, hence diminished perception robustness.




Abstract:Millions of packages are delivered successfully by online and local retail stores across the world every day. The proper delivery of packages is needed to ensure high customer satisfaction and repeat purchases. These deliveries suffer various problems despite the best efforts from the stores. These issues happen not only due to the large volume and high demand for low turnaround time but also due to mechanical operations and natural factors. These issues range from receiving wrong items in the package to delayed shipment to damaged packages because of mishandling during transportation. Finding solutions to various delivery issues faced by both sending and receiving parties plays a vital role in increasing the efficiency of the entire process. This paper shows how to find these issues using customer feedback from the text comments and uploaded images. We used transfer learning for both Text and Image models to minimize the demand for thousands of labeled examples. The results show that the model can find different issues. Furthermore, it can also be used for tasks like bottleneck identification, process improvement, automating refunds, etc. Compared with the existing process, the ensemble of text and image models proposed in this paper ensures the identification of several types of delivery issues, which is more suitable for the real-life scenarios of delivery of items in retail businesses. This method can supply a new idea of issue detection for the delivery of packages in similar industries.