Fault Detection and Identification
Abstract:False and nuisance alarms in industrial fault detection systems are often triggered by uncertainty, causing normal process variable fluctuations to be erroneously identified as faults. This paper introduces a novel encoder-based residual design that effectively decouples the stochastic and deterministic components of process variables without imposing detection delay. The proposed model employs two distinct encoders to factorize the latent space into two orthogonal spaces: one for the deterministic part and the other for the stochastic part. To ensure the identifiability of the desired spaces, constraints are applied during training. The deterministic space is constrained to be smooth to guarantee determinism, while the stochastic space is required to resemble standard Gaussian noise. Additionally, a decorrelation term enforces the independence of the learned representations. The efficacy of this approach is demonstrated through numerical examples and its application to the Tennessee Eastman process, highlighting its potential for robust fault detection. By focusing decision logic solely on deterministic factors, the proposed model significantly enhances prediction quality while achieving nearly zero false alarms and missed detections, paving the way for improved operational safety and integrity in industrial environments.
Abstract:The Fisher Information Matrix (FIM) provides a way for quantifying the information content of an observable random variable concerning unknown parameters within a model that characterizes the variable. When parameters in a model are directly linked to individual features, the diagonal elements of the FIM can signify the relative importance of each feature. However, in scenarios where feature interactions may exist, a comprehensive exploration of the full FIM is necessary rather than focusing solely on its diagonal elements. This paper presents an end-to-end black box system identification approach that integrates the FIM into the training process to gain insights into dynamic importance and overall model structure. A decision module is added to the first layer of the network to determine the relevance scores using the entire FIM as input. The forward propagation is then performed on element-wise multiplication of inputs and relevance scores. Simulation results demonstrate that the proposed methodology effectively captures various types of interactions between dynamics, outperforming existing methods limited to polynomial interactions. Moreover, the effectiveness of this novel approach is confirmed through its application in identifying a real-world industrial system, specifically the PH neutralization process.
Abstract:In brain neural networks, Local Field Potential (LFP) signals represent the dynamic flow of information. Analyzing LFP clinical data plays a critical role in improving our understanding of brain mechanisms. One way to enhance our understanding of these mechanisms is to identify a global model to predict brain signals in different situations. This paper identifies a global data-driven based on LFP recordings of the Nucleus Accumbens and Hippocampus regions in freely moving rats. The LFP is recorded from each rat in two different situations: before and after the process of getting a reward which can be either a drug (Morphine) or natural food (like popcorn or biscuit). A comparison of five machine learning methods including Long Short Term Memory (LSTM), Echo State Network (ESN), Deep Echo State Network (DeepESN), Radial Basis Function (RBF), and Local Linear Model Tree (LLM) is conducted to develop this model. LoLiMoT was chosen with the best performance among all methods. This model can predict the future states of these regions with one pre-trained model. Identifying this model showed that Morphine and natural rewards do not change the dynamic features of neurons in these regions.
Abstract:Due to the incapability of one sensory measurement to provide enough information for condition monitoring of some complex engineered industrial mechanisms and also for overcoming the misleading noise of a single sensor, multiple sensors are installed to improve the condition monitoring of some industrial equipment. Therefore, an efficient data fusion strategy is demanded. In this research, we presented a Denoising Multi-Modal Autoencoder with a unique training strategy based on contrastive learning paradigm, both being utilized for the first time in the machine health monitoring realm. The presented approach, which leverages the merits of both supervised and unsupervised learning, not only achieves excellent performance in fusing multiple modalities (or views) of data into an enriched common representation but also takes data fusion to the next level wherein one of the views can be omitted during inference time with very slight performance reduction, or even without any reduction at all. The presented methodology enables multi-modal fault diagnosis systems to perform more robustly in case of sensor failure occurrence, and one can also intentionally omit one of the sensors (the more expensive one) in order to build a more cost-effective condition monitoring system without sacrificing performance for practical purposes. The effectiveness of the presented methodology is examined on a real-world private multi-modal dataset gathered under non-laboratory conditions from a complex engineered mechanism, an inline four-stroke spark-ignition engine, aiming for spark plug fault diagnosis. This dataset, which contains the accelerometer and acoustic signals as two modalities, has a very slight amount of fault, and achieving good performance on such a dataset promises that the presented method can perform well on other equipment as well.
Abstract:There is growing importance to detecting faults and implementing the best methods in industrial and real-world systems. We are searching for the most trustworthy and practical data-based fault detection methods proposed by artificial intelligence applications. In this paper, we propose a framework for fault detection based on reinforcement learning and a policy known as proximal policy optimization. As a result of the lack of fault data, one of the significant problems with the traditional policy is its weakness in detecting fault classes, which was addressed by changing the cost function. Using modified Proximal Policy Optimization, we can increase performance, overcome data imbalance, and better predict future faults. When our modified policy is implemented, all evaluation metrics will increase by $3\%$ to $4\%$ as compared to the traditional policy in the first benchmark, between $20\%$ and $55\%$ in the second benchmark, and between $6\%$ and $14\%$ in the third benchmark, as well as an improvement in performance and prediction speed compared to previous methods.
Abstract:Addiction is a major public health concern characterized by compulsive reward-seeking behavior. The excitatory glutamatergic signals from the hippocampus (HIP) to the Nucleus accumbens (NAc) mediate learned behavior in addiction. Limited comparative studies have investigated the neural pathways activated by natural and unnatural reward sources. This study has evaluated neural activities in HIP and NAc associated with food (natural) and morphine (drug) reward sources using local field potential (LFP). We developed novel approaches to classify LFP signals into the source of reward and recorded regions by considering the time-domain feature of these signals. Proposed methods included a validation step of the LFP signals using autocorrelation, Lyapunov exponent and Hurst exponent to assess the meaningful stability of these signals (lack of chaos). By utilizing the probability density function (PDF) of LFP signals and applying Kullback-Leibler divergence (KLD), data were classified to the source of the reward. Also, HIP and NAc regions were visually separated and classified using the symmetrized dot pattern technique, which can be applied in real-time to ensure the deep brain region of interest is being targeted accurately during LFP recording. We believe our method provides a computationally light and fast, real-time signal analysis approach with real-world implementation.
Abstract:Since batch algorithms suffer from lack of proficiency in confronting model mismatches and disturbances, this contribution proposes an adaptive scheme based on continuous Lyapunov function for online robot dynamic identification. This paper suggests stable updating rules to drive neural networks inspiring from model reference adaptive paradigm. Network structure consists of three parallel self-driving neural networks which aim to estimate robot dynamic terms individually. Lyapunov candidate is selected to construct energy surface for a convex optimization framework. Learning rules are driven directly from Lyapunov functions to make the derivative negative. Finally, experimental results on 3-DOF Phantom Omni Haptic device demonstrate efficiency of the proposed method.
Abstract:Industry 4.0 will make manufacturing processes smarter but this smartness requires more environmental awareness, which in case of Industrial Internet of Things, is realized by the help of sensors. This article is about industrial pharmaceutical systems and more specifically, water purification systems. Purified water which has certain conductivity is an important ingredient in many pharmaceutical products. Almost every pharmaceutical company has a water purifying unit as a part of its interdependent systems. Early detection of faults right at the edge can significantly decrease maintenance costs and improve safety and output quality, and as a result, lead to the production of better medicines. In this paper, with the help of a few sensors and data mining approaches, an anomaly detection system is built for CHRIST Osmotron water purifier. This is a practical research with real-world data collected from SinaDarou Labs Co. Data collection was done by using six sensors over two-week intervals before and after system overhaul. This gave us normal and faulty operation samples. Given the data, we propose two anomaly detection approaches to build up our edge fault detection system. The first approach is based on supervised learning and data mining e.g. by support vector machines. However, since we cannot collect all possible faults data, an anomaly detection approach is proposed based on normal system identification which models the system components by artificial neural networks. Extensive experiments are conducted with the dataset generated in this study to show the accuracy of the data-driven and model-based anomaly detection methods.
Abstract:In this paper, a new approach is proposed for designing transferable soft sensors. Soft sensing is one of the significant applications of data-driven methods in the condition monitoring of plants. While hard sensors can be easily used in various plants, soft sensors are confined to the specific plant they are designed for and cannot be used in a new plant or even used in some new working conditions in the same plant. In this paper, a solution is proposed for this underlying obstacle in data-driven condition monitoring systems. Data-driven methods suffer from the fact that the distribution of the data by which the models are constructed may not be the same as the distribution of the data to which the model will be applied. This ultimately leads to the decline of models accuracy. We proposed a new transfer learning (TL) based regression method, called Domain Adversarial Neural Network Regression (DANN-R), and employed it for designing transferable soft sensors. We used data collected from the SCADA system of an industrial power plant to comprehensively investigate the functionality of the proposed method. The result reveals that the proposed transferable soft sensor can successfully adapt to new plants and new working conditions.
Abstract:In this paper, we present a new idea for Transfer Learning (TL) based on Gibbs Sampling. Gibbs sampling is an algorithm in which instances are likely to transfer to a new state with a higher possibility with respect to a probability distribution. We find that such an algorithm can be employed to transfer instances between domains. Restricted Boltzmann Machine (RBM) is an energy based model that is very feasible for being trained to represent a data distribution and also for performing Gibbs sampling. We used RBM to capture data distribution of the source domain and use it in order to cast target instances into new data with a distribution similar to the distribution of source data. Using datasets that are commonly used for evaluation of TL methods, we show that our method can successfully enhance target classification by a considerable ratio. Additionally, the proposed method has the advantage over common DA methods that it needs no target data during the process of training of models.